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ABSTRACT 
Adding new wells and new production in existing fields under 
EOR is particularly important in matured fields that are 
characterized by a long history of field activity. Different drilling 
programs, variety of field treatments, well conversions, and new 
injectors add many layers of complexity and uncertainty on top of 
the existing effects of geological, completion, and production 
factors. 
Surveillance and prediction of responses caused by injected 
fluids, in fields with dozens of patterns and hundreds of wells, 
calls for computer based systems that estimate responses 
based on numerical and statistical solutions. This is especially 
important when geological understanding is very weak (no core, 
no log data).  
This paper shows how results from EOR surveillance programs 
can be integrated with the geological data. Furthermore, this 
paper shows how to build predictive models for the production 

estimates based on the injection responses and geology. These 
models support two to three times more accurate selection of 
wells with high oil production during EOR than historically 
implemented selections. 
Included in the paper are practical tips on how to select the best 
model and derive solutions with decision trees that are 
equivalent to sets of English based rules. Solutions from 
decision trees are compared with solutions from logistic 
regression and neural networks.  This comparison deals with the 
statistical accuracy of model predictions, interpretation ability, 
and assist in applying these models to support field decisions.  
Finally, the new results presented here have come from the two 
versions of the improved decision tree model. In the first version 
a better version of the model was built. This model was 
characterized by a lift curve above four (400% improvement in 
the first decile). Such a result represents a significant 
improvement in comparison to the model from the 2001 report 
and presented during CIPC 2002 conference. In the second 
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version new core and completion data set were added when 
building the model. 
 
Keywords:  EOR, Waterflood responses, Modeling, Decision 
Trees, Neural Networks, Logistic Regression, Optimizing 
Injection, Fluid Communication, Field Surveillance. 

INTRODUCTION 
 
The project’s main goal was to develop a predictive model for 
production rates during waterfloods. In predictive modeling, 
regression is traditionally applied to predict continuos target 
variables1. Models that predict binary response variables use 
logistic regression2. A binary target variable is characterized by 
two events. They can be of numerical nature 0 and 1 where zero 
represents non-event and one represents an event. 
Alternatively, a character string with two outcomes (e.g. No and 
Yes) is often applied.  
In the case of a continuos target variable, we may predict the 
fluid rates of oil, water, gas, or the total fluids. The binary 0/1-
target variable can represent a low or high production output 
respectively. A production cut-off can be based on economical or 
engineering criteria applied to the actual rates or volumes in a 
specific time period. 
 
This paper presents the history of a model development for 
predicting waterfood responses in the Pekisko B. field3. These 
predictions were done in two forms. The first form predicted the 
actual normalized volume of production. The normalized 
production was defined as a ratio of the well production, in a 
specific time period, to the total field production in the same time 
period. In the second approach a high-normalized production 
binary indicator variable of two levels (0 and1) was defined 
based on a cut-off. If a well production placed it in the best 
quartile, then the binary target value was assigned a value of 
one, otherwise it was assigned value of zero. 
Both types of the target variables (continuous and categorical) 
were predicted based on the geological and the injection 
response data sets. The injection response variables were 
identified in the earlier part of the project3. They included oil, 
water, gas, and total fluid responses to the injection changes. 
These responses were calculated as Spearman non-parametric 
correlation between the injected rates and the specific 
production rates (oil, water, gas, and the total fluid). The 
geological set contained Pekisko B top subsea, Pekisko B 
subsea of oil-water contact, and Pekisko B netpay for all wells in 
the field.   
 
In each case, we have built regression, neural network, and 
decision tree model types. In the case of the binary target 
variable, a logistic regression model was developed to predict 
the probability of a high oil production. A modeling input data set 
contained 480 observations that were split into a learning set 
with 40% of the observations, a validation set with 30% of the 
observations, and a testing set with the remaining 30% of the 
observations.  
 
This study identified large performance differences between the 
prediction powers of models developed with different modeling 
methods. Specifically, the final decision tree model outperformed 
the logistic regression and the neural network models. The 
strength of the decision tree model originates from the fact that 
each sequential node split (decision branch) does not have to 
have continuity along the boundaries between different regions 
or segments. We identified that special care should be taken 
when developing the tree models. They often become unstable 
when there are many variables that compete in the splitting of a 
specific node.  
 

Integration of geological and response variables in a model 
allowed the development of rules that would support predicting a 
well’s performance during EOR. Interpretability requirement 
favored regression, logistic regression, and especially decision 
tree models because of their English based nature of rules.  
Models based on neural networks did not prove superior to other 
models and they definitely did not support any interpretation of 
predictions. 
In most cases, the models developed in this project were based 
on a pre-selected subset of variables that provided the best 
quality predictive models. In the initial stages of the model 
development, these subsets of variables were derived with 
stepwise selection regression, backward elimination regression, 
or decision tree techniques 4,5.  

 

INJECTION RESPONSES 
This study is based on new developments for analyzing injection 
responses in patterns for waterflood optimization. Our method is 
based on the injection and production rates history. The 
principles of the methodology were recently published in the 
JCPT Journal (June 2001)3. Earlier publications included paper 
99-46 during the CIM Conference (June 1999)6 and an SPE 
paper during the Conference on Horizontal Well Technology 
(October 1998)7. The technique is applicable to vertical and/or 
horizontal wells for injection optimization. It can however play an 
essential role in studies to locate the under-performing fields that 
may represent the acquisition targets. Furthermore, the same 
technique can detect communication between producers and 
can help in designing new waterfloods. Vertical and especially 
horizontal wells can respond to a dozen or more of vertical 
injectors. Understanding fluid communication between the 
production well and the surrounding injectors is essential to 
estimating the effectiveness of the waterflood and helps predict 
responses to the waterflood. Armed with the understanding of 
responses, we can optimize injection patterns, improve 
production rates, and achieve more efficient oil recovery.  
 
Comparing the produced rates of oil, water, gas and the total 
fluid to the injected water demonstrates fluid communication 
through a reservoir. However, typical oilfields can exhibit 
complex geology across a field or across patterns, accidental 
schedules of wells and/or random changes in the injection and 
production rates.  Together with the shear volume of data, 
manual analyses may lead to ambiguous and biased 
associations between producers and injectors.  Our 
methodology technique provides a rigorous and unbiased 
approach. It is based on the Spearman rank correlation between 
the injected and produced rates over a period of time series8. 
This correlation and the time lags between the injection and the 
associated production rates allow us to compress these series of 
rates into a set of simple parameters. We estimate oil, water, 
gas, and total fluid responses.  
This study showed, that better characterization of fluid 
communication with the Spearman rank correlation, can be 
achieved when differencing is applied to the input time series for 
the injection rates and rates of oil, water, gas, and the total fluid. 
These response parameters are estimated for every combination 
of injector and producer.  
 
In regular patterns with vertical wells, the correlations (oil, gas, 
water, and total fluid responses) and associated time lags can 
be presented in the form of a single or composite star diagram. 
Furthermore, the same parameters can be presented on 
composite spider graphs, which show the responses at both the 
short and the long distance scale. 
In an integration process, sets of composite diagrams can be 
overlaid with contour maps of facies or netpay maps. These 
presentations help find the significant relationships between the 
producer’s responses and the underlying geology and help in 
understanding field behavior. They can also help to evaluate 
sweep efficiency, select areas for the infill programs, identify 
ineffective injectors, identify producers without support, better 
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estimate the production allocation, find areas with fluid loses, 
and develop communication/correction maps for reservoir 
simulation. For detailed description of the methodology and 
visualization techniques please refer to previously quoted 
papers3,6,7. 
The advantage of the approach is the capability to do a quick 
analysis and interpretation of fields under the waterflood, with a 
large number of injectors and many years of history. This 
methodology was developed from our experience in field studies 
for Golden Lake, Swan Hills, Midale, Valhalla, Goose River, 
Cactus Lake, Mirage, and Pekisko B.  

 

 

MODEL DEVELOPMENT 
The modeling process described in this section is characteristic 
of a data driven model development9,10. Custom programs were 
used to load, format, summarize, and transform data from the 
external data sources. The final data set(s) formed a project 
database. Flat files, Excel tables, archived files, and databases 
provided the required interface to production and geological data 
sources.  
Initially, a set of programs was developed, which called a variety 
of procedures. These procedures included regression, logistic 
regression, and discriminant analysis1,4. Many programs were 
modified and different options were enabled, as they were 
required. The log and output printouts were created and some of 
them were saved as files for future reference. This project 
involved numerous iterations, the maintenance of programs, 
outputs, and options. Developing a good model is no longer an 
isolated one time project. Usually it is only the first step in the 
development of a set of models. The best of them may be used 
to develop a production decision support system (DSS). Such 
systems usually are vehicles of innovation, cost reduction, and 
improved decision support. The best model type selection 
becomes more obvious when one compares solutions from 
different model types and finds drastic differences in their 
performance. 
 
In the second part of this project, we developed and refined 
three different model types. These models were based on 
regression, neural networks12, and decision trees13,14. The 
selection of variables, diagnostics, and interpretation were 
heavily used to justify each of the development steps and 
directed further activity. 
The initial data loads and data cleaning were not repeated. 
However, we performed new data summarization, normalization, 
and segmenting. Designing data normalization and compression 
often represents the most important part of any data-mining 
project.  
Descriptive statistics played significant role in summarization 
processes, generation of categorical variables, and defining 
normalized parameters. These additional variables had triple 
purpose. First, they represented initial segmentation based on 
‘known’ geological knowledge and observed distributions. 
Secondly, some of these categorical variables were generated 
for the model performance testing, verification of performance 
segments based on residuals, and verification of untested 
hypothesis. Thirdly, some of them represented a hierarchy of 
dimensions (geography, well type, and time) and were designed 
to support multidimensional reporting of historical data and 
model predictions. 
 

PROJECT DIAGRAM FLOW 
A project flow diagram for the well performance prediction or 
ranking (based on normalized oil production) is presented in 
Figure 1.  At one point this diagram contained two to three 
decision tree models and the same number of other model 
types. They were used to compare between a series of one-type 
models. In particular, they allowed for comparison of different 
neural network or decision tree models. For example, we tested 
a variety of neural network models with different number of 

hidden layers or/and with direct links between the input and 
output layers. Similarly, the decision tree depth, the splitting 
criteria, splitting variables, the business interpretability, and the 
miss-classification rates were compared before the best tree 
model was selected.  
 
The process flow started with the Input Data Source node. This 
node mapped data from a set with the pre-summarized data and 
assigned additional variable attributes that were required by 
modeling nodes (Regression, Neural Network, and Tree). These 
attributes included the model role for each variable (target, input, 
rejected) and were changed from their default assignments when 
required. Tables of statistics and histograms were reviewed for 
interval and class variables.  
The second node the Attribute marked variables to be used. 
Next, this node assigned a role, a type (character or numerical), 
and additional attributes of each variable. A variable’s role could 
be id, target, input, and rejected, while the variables 
measurement cold be assigned to unary, binary, nominal, 
ordinal, and interval.   
Furthermore, models in this study were optimized to maximize 
profit based on a constant cost and expected profits associated 
with each decision. This required defining ‘Profit matrix’ and 
‘Constant Cost Matrix’. The first was a 2*2 matrix that 
represented the expected profit (see Table 1) based on actual 
and predicted outcomes (1/0 Good/Poor well).  The constant 
cost matrix in Table 2 contained two rows with costs based on 
two decisions (1/0). 
 
Table 1. Profit matrix. 

Predicted 
Actual outcome 

1 (Good) 0 (Poor) 

1  5,000,000 0 
0 0 0 

 
 
Table 2. Constant cost matrix. 

Decision Cost 
1 500,000 
0 0 

 
Next, the Partition node performed data sampling into learning, 
validation, and testing sets. These data sets resulted from a 
combination of the user-defined sampling and the random 
sampling. Three subsets: Train, Validation, and Test, were 
selected from the original data set of 480 observations. Stratified 
sampling and user-defined sampling were tested in this node as 
well. 
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Figure 1. Project flow diagram. 
 
Many data mining databases have hundreds of potential model 
inputs (independent or exploratory variables) that can be used to 
predict the target (dependent or response variable). The 
Variable Selection node assisted in reducing the number of 
inputs by setting the status of the input variables that were not 
related to the target as rejected. Although rejected variables 
were passed to subsequent nodes in the process flow, these 
variables were not used as model inputs by successor modeling 
nodes. This node identified input variables, which were useful for 
predicting the target variables. The input status was assigned to 
these variables. In some cases this automatic selection was 
overridden by assigning the input status to a rejected variable or 
the rejected status to an input variable. The subset of the most 
important inputs was then evaluated in more detail by one of the 
modeling nodes. 
The next vertical layer of nodes consisted of the Regression 
(logistic for the binary target) node, Tree node, the Neural 
Network node. A User Defined Model was developed at one 
point (not in Figure 1). This node was used to develop a 
discriminant function. In later stages of the project the 
disciminant analysis modeling was discontinued because it did 
not performed better than the logistic regression models and 
more efforts were required to develop the neural network and the 
decision tree models. 
The modeling nodes performed all of the steps required to find 
the most optimal model for the specific model type. Finally, the 
Score node (Figure 1) was used to generate predictions from a 
trained model and a new input data set. This node applied each 
model’s formula to the ‘unknown’ data set. In practical terms it 
was a subset of the input data set. The predictions were 
accompanied by assessment statistics.  
Each of the modeling nodes in Figure 1 was connected to its 
own Reporter node. They generated HTML reports that 
supported structured reporting of each modeling approach. 
These reports contained the process flow diagram, header 
information, settings, and results. 
The Assessment node (Figure 1 and Figure 2) compared models 
and prediction diagnostics for all modeling nodes. This 
comparison was facilitated with a set of advanced charts for lift, 
and profit, return on investment (ROI), receiver operating curve 
(ROC), and response threshold chart5,15,16. 
 
A direct link between a specific modeling node and assessment 
node was applied to reassure the user’s model selection. 
Alternatively, the link between the Assessment and the Score 
node would select the first model from the list of models, unless 
a manual selection was made (Figure 2a). A direct link between 
the decision tree node and the scoring node in Figure 2b 
explicitly specifies which model to score and evaluate. Non-
standard and custom assessments can be applied with the SAS 
Code node. 
At different steps, two more nodes were applied to review the 
data and results. First, the Distribution Explorer node enabled 
visual exploration of large volumes of data. The node was used 
primarily in the exploration phase to uncover patterns and trends 
and to reveal extreme values in the database. Next, the Insight 
node allowed exploring and analyzing the data through graphs 
and analyses that were linked across multiple windows. These 
analyses included univariate distributions, investigation of 
multivariate distributions, creating scatter and box plots, 
displaying mosaic charts, examining correlations, and fitting 
explanatory models.  

 
Figure 2a. The Assessment and Scoring nodes. 

 
Figure 2b. The Scoring and SAS Code nodes.  

 
DECISION TREE MODELING  
Decision trees are well suited for clustering and classification 
tasks. Decision trees classify data by applying a series of simple 
rules. Each rule assigns an observation to a class based on one 
specific parameter in a recursive fashion. The resulting classes 
are individually divided into new classes, based on new splitting 
parameters and rules applied to these parameters. All 
subdivided and non-subdivided classes are called nodes, and 
create the hierarchical structure of the decision tree. This rule-
based recursive splitting process generates branches that can 
vary in depth. The depth, in turn, corresponds to the number of 
subdivision levels. The original class contains the entire data set 
and is called the root node of the tree. The final nodes that are 
not subdivided are called the leaves. Such hierarchical structure 
corresponds to an inverted tree where the root is on the top and 
the leaves are at the bottom. 
 When being developed with the training set, trees divide a 
population into segments with similar characteristics. In our 
case, we wanted to find out which of a long list of attributes 
(geological and response parameters) were the best predictors 
of a well’s performance, what rules they followed, and where in 
the tree we should apply them.  
 
In general, a decision tree applies the same decision to each 
observation that trickles though the set of rules from the tree root 
and ends up in the same leaf node. This means the same 
classification (good/poor) or the same production value (e.g. 
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8.31 m3/day) is associated with all observations in the same leaf 
node. Figure 3 presents a tree example with the corresponding 
values of parameters that were used to split the nodes at 
different levels of the tree subdivision. 
 
 
 

 
 
Figure 3. Tree Diagaram; Subdivision levels=3; Max Number of 
Splits=3. 
 
At first, the algorithm might have determined that the attribute 
with the most impact was P_Net_Oil (Producer’s Pekisko B net 
oil), and then might have decided to split the population into 
three groups or clusters based on the net pay <8, <16, and 
>=16. The next most important splits, in order, might have been 
C_Oil_0 (zero lag normalized oil response), and P_SUB_Top 
(Producer’s Pekisko B top subsea). Symbols  ‘Y’ or ‘N’ in Figure 
3 identify good and poor classification bins. These leaf nodes 
(bins) represented the nodes that were not subdivided. Numbers 
in brackets show the number of observations in each leaf node 
(non-divided bin). 
A final decision tree model in Figure 3 can be used for 
classifying a new well or a newly converted or treated well from 
the geological parameters and the instantaneous oil response 
(C_Oil_0). This model assigns these wells to two risk groups of 
good and poor producers (Y/N). An example of a pseudo code 
that corresponds to some portions of this decision tree is 
presented below:  
 
IF 16.1 <= P_NET_OIL  < 17.9 

AND -1250.35 <= P_SUB_TOP  < -1244.95 
AND 0.26 <= C_OIL_0  

THEN 
P1 = 100.0%   
P0 = 0.0%   

 
IF P_SUB_TOP  < -1252.21 

AND -0.045 <= C_OIL_0  < 0.26 
AND 16.1 <= P_NET_OIL  

THEN 
P1 = 65.2%  
P0 = 34.8%  

  
IF C_OIL_0  < -0.045  

AND 16.1 <= P_NET_OIL  
THEN  

P1 = 20.0%  
P0 = 80.0%  

 
where  

P1 is probability of good well 
 and 
P0 is probability of poor well. 

 
When a decision tree is verified and proven, such code can be 
easily implemented in any software package that is used in the 
petroleum industry. In this specific example, the estimated 
classification will be based on the posterior probability of good 
(P1) and poor well (P0).  With a 50% threshold cut-off value, a 
user’s decision will be estimated from a simple formula: 
if(P1 >= 50%) then GOOD else POOR.  
 
Different assessment measures are used to select the best tree, 
based on the results obtained from the validation data (or test if 
not available). There are two opposing activities during the tree 
model development. First, an algorithm generates a full-grown 
tree by a recursive node splitting, and the second prunes explicit 
nodes or sub-trees in order to retain the most optimal tree17,18. 
A recursive splitting of nodes during a tree construction is based 
on the strength (statistics) of the splitting rules: 
• If the Chi-square or the F test criterion is selected, then the 

computed statistic is the LOGWORTH = -log(p-value from 
Chi-square or F test).  

If the Entropy or Gini reduction criterion is selected, then the 
computed statistic is the WORTH, which measures the reduction 
in variance for the split5.  
 
 

Table 3. Competing splits for a tree with three branches. Splitting 
criterion based on Gini test. 

 
Table 4. Competing splits for a tree with two or three branches. 
Splitting criterion based on Chi-square or F-test. 
 
Larger values for both LOGWORTH and WORTH are better. The 
method is recursive because each set of new nodes results from 
splitting of the previously divided node. After a node is split, the 
newly created nodes are considered for splitting. This recursive 
process ends when no node can be split any further. 
 

Figure 4. Example of a tree node statistics. 
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Table 3 and Table 4 show two different geological and 
waterflood response criteria used to evaluate competing node 
splits. Such tables were used during the interactive development 
of the decision trees.  
In addition, different sub-tree methods determine, which sub-tree 
is selected from the fully-grown tree. This process can be based 
on whether or not the profit/loss matrix is used for a split search. 
Figure 4 shows an example of tree node diagnostics for each 
target level in percent, the corresponding count, the total count,  
 
 
 
the overall decision level associated with a specific node. The 
last two rows show the expected profit for each level. The 
statistics is shown for the training (learning) and validation data 
set. 

MODEL ASSESEMENT 
Early diagnostics based on classification tables (confusion 
tables) indicated that decision tree models performed better than 
models based on logistic regression and neural networks. It was 
true for both the training (learning) and validation data sets. 
However, business driven decisions required more than just two 
rates of the correct and erroneous classifications. In non-
discriminatory drilling or well conversion program, a single or 
multiple criteria can be used to identify the potential list of wells. 
However, the program cost can be lowered substantially if we 
identify a much smaller portion of wells that are most likely to 
respond to the implemented waterflood with the right response 
type. This corresponds to higher oil rates.  
 
A new well’s classification in this project was based on a pre-
selected cut-off applied to the estimated posterior probability. 
Following pseudo-code shows this logic:  

If(posterior probability >= Cut-off) then Good Well 
Else Poor Well 

 
 
Figure 5. Cumulative response curves. 
 
More advanced analysis and identification of the probability 
percentage cut-off was facilitated with lift curves. In a lift chart 
(also known as a gains chart) for a non-binary target, all 
observations from the scored data set are sorted from highest 
expected production to lowest expected production. For binary 
target, the scored data set is sorted by the posterior probabilities 
of the event level (production in the highest quartile) in 
descending order. Then the observations are grouped into 
deciles.  
Figure 5 shows an example of a cumulative percent response lift 
chart for three models. In this chart, the target production index 

is sorted from left to right, by wells that are most likely to 
produce. This likeliness was estimated based on the posterior 
probability of the target event level equal to one (High 
production) as predicted by each model. The sorted group is 
lumped into ten percentiles along the X axis; the left-most 
percentile is the 10% of the target predicted most likely to 
produce. The vertical axis represents the predicted overall 
cumulative percentile of good producers in the selected deciles 
along the X-axis. Thus, if we drill/convert all wells (100%) the 
response (percentage of good wells) will be equal to the success 
observed in the whole sample (22-23%). However, if we go after 
the best 10% or 20% or 30% of all wells than the success rate 
will be around 88%, 62%, and 50% respectively. This and the 
following charts show models being compared and 
superimposed with an exact model. The exact model captures 
all of the good wells as soon as possible (for example, if there 
are 30 good wells in a 100 well field, then the exact model will 
capture all of the wells in the first three deciles).  
 
Figure 6 shows the percentage of good producers in each decile 
and this graph presents non-cmulative response curves.  A 
baseline in this figure shows an average percentage of wells 
with good performance in the original sample. Thus, it is shown 
as a reference for any model, which was developed during this 
study. The presented curves show the non-cumulative response 
rate for the sorted deciles that correspond to percentiles from 10 
to 100. The first decile (10) shows the rate (high production) for 
the top 10 percent of the model scores (the most likely good 
wells). The second decile shows the expected success rate for 
the second best 10 percent of the model scores, and so on.  
These curves allow a user to compare the model quality 
(success rates) in deciles (in decreasing quality bins) for 
different models. In particular, it shows that the decision tree 
model correctly predicts nearly 88 percent of the producers in 
the top 10% on the predicted list. 

 
 
Figure 6. Non-cumulative response curves. 
 
Figure 7 shows the cumulative lift curves, which correspond to 
the three models (tree, logistic regression, and neural net). A lift 
curve shows model’s effectiveness relative to a baseline, which 
shows an overall (average) historical success rate (horizontal 
line). Non-cumulative lift curves (shown in Figure 8) enhance 
visual comparison of the model’s performance in each decile. 
Figure 7 and Figure 8 show the lift curves in a relative scale, 
where the baseline corresponds to one (historical success rate). 
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The non-cumulative lift curve for the decision tree in Figure 8 
shows that beyond the forth decile even the best model 
performed below the overall average. The non-cumulative lift 
curve for the tree model in Figure 8 shows nearly two to four 
time better success rate than historically observed in the field. 
This range of improvement in the well selection would be 
achieved if the tree model was implemented and used to select 
only 20% and 10% of the best wells respectively. 
Both sets of lift curves showed that the logistic and neural 
models significantly under-performed relatively to the decision 
tree model. The non-cumulative lift curves in Figure 8 showed 
that the best model performance dropped fast from around 4 to 
1.8 between the first and the third best decile. Erratic 
performance of the regression and neural network models 
between the 60 and 90 percentiles indicates their inability to 
account for the observed variability with the selected 
dimensions. 
 

Figure 7. Cumulative lift curves.  
 

 
Figure 8. Non-cumulative lift curves. 
 

As with any type of modeling, adding more variables should 
increase the decision tree performance. The same effect can be 
achieved by adding more subdivision levels (increasing the tree 
depth) or increasing the number of branches from a node. 
Finally, different node splitting criteria can make a difference in 
most instances.  Figure 9 shows a comparison of lift curves 
between three decision trees with different node splitting criteria. 
In this specific case, applying the Chi-square test to evaluate the 
node-splitting criterion provided the best lift in the first two 
deciles. 
 
 
 

 
 
 
Figure 9. Cumulative lift curves for three decision trees with 
different node splitting criteria.  
 
Many modeling decisions as well as the model selection 
depended on the misclassification rates. Figure 10 shows a 
confusion (classification) chart with agreements between the 
actual and predicted counts for the tree model at the 50% 
threshold value.  This diagram helped with verifying the 
agreement between the actual and the predicted classes at 
different threshold levels. The threshold level is the cutoff that 
was applied in classifying observations based on the evaluated 
posterior probabilities. If a predicted score was below the 
threshold value, then the predicted production class was 
assigned to zero (production below the desired level), otherwise 
the class was assigned to one (good production).  
 
A threshold-based interactive profit chart represents a higher 
degree in decision making. This chart enables observing the 
relationship between the return/profit and the threshold value for 
a specified profit matrix. Well identification efforts and drilling 
programs have associated costs and returns on investment for 
each case of four outcomes between the predicted and the 
actual outcomes. Figure 11 presents a profit matrix for these four 
outcomes. 
A simple (0/1 or N/Y) decision schema had two cases of 
misclassification and two cases of correct classification. The 
assigned fix profit was based on a simple principle that a 
successful prediction (identified as a good prospect) would 
generate 10 units (in millions of $) less 0.0 units of the fixed 
costs (see 1/1 cell with return=10). A non-successful well pick, 
which was classified as a good producer, had a negative return 
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related to the fixed cost (-0.5). The predicted non-events were 
classified in a similar way, where 0 was assigned for the 1/0 
case (missed revenue), and 0 for the 0/0 case (the correct 
prediction of the non-event). This was one of many scenarios 
that were tested with the model. The presented values have 
been changed from the original values to preserve the 
confidentiality of information. 

 
 
Figure 10. Threshold chart for a tree model at threshold of 50%. 
 
 
 
The corresponding profit (return) chart in Figure 12 shows a 
relationship of the estimated return versus the classification 
threshold value (if posterior probability >= threshold, then 
class=1). This diagram shows that thresholds in range 5-50% 
should generate the highest average return. It shows that the 
best average return and the highest total production volumes 
could be achieved at the 5% threshold value. This translates to 
selecting most of the wells (If posterior probability >= 5% then 
GOOD). 
 
The above example characterized a relatively successful 
waterflood implementation, where a large amount of laboratory 
studies were undertaken before the decisions were made.  
A fine-tuning of a threshold value, which is used in a final model, 
is specifically important in projects with nonrandom samples 
(e.g. rare case sampling). During such studies, a user can 
uncover relationships between the predicted and the actual 
target values, as a function of the threshold values.  

Figure 11. Profit matrix. 

 
  
Figure 12. Return (average profit) for decision tree based on 
profit matrix (1/1=10M; 1/0=0; 0/1=-0.5; 0/0=0); Profit matrix from 
Figure 11. 
 
Figure 13 presents similar behavior of the average return, which 
was based on a different profit matrix. In this example, the 
expected return per customer would reach a maximum at a 
threshold level of zero percent. Such threshold implementation 
corresponds to drilling of all wells. This case accounted for ‘lost 
opportunities’, which corresponded to the 1/0 case where a good 
well was miss-classified as a non-producer. A penalty of –8M 
was assigned to this miss-classification type.  
 

 
Figure 13. Return (average profit) for a decision tree based on 
profit matrix with a lost opportunity (1/1=10M; 1/0=-8M; 0/1=-0.5; 
0/0=0). 
 
Figure 14 shows the average profit structure for a different 
decision tree. In this case the best results require a much higher 
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threshold value. This graph shows that the low but positive 
expected average profit is reached for thresholds between 35% 
and 90%. This means that in order to maintain a high level of 
production and profitability the threshold value would be set to 
35%. Thus, a good potential well will be defined as a well that 
has a posterior probability estimate greater than the threshold 
value of 35%. 
 
 
 
    
 

 
 
Figure 14. Return (average profit) for a decision tree based on 
profit matrix that recommends only the best wells. 
 

DECISION TREE VERSUS NEURAL NETWORKS 
Neural networks have been utilized in variety of studies with 
optimism fueled by the origin of this tool and from publicized 
successful applications. However, in this study the neural net 
models were not able to prove their strength19,20,21,22. 
Adding extra variables in our implementation of the neural 
network model (Figure 5-9) nor adding hidden layers nor adding 
direct links between input and output layer did not produced 
better models. Thus, the final model and the production system 
utilized a formula that was based on the decision tree model. 
Furthermore, neural network development requires significant 
statistical analysis in order to understand the data and the 
process flows. Thus, most practitioners apply the stepwise 
regression, the backward regression, and the decision tree 
variable selection before applying neural network modeling. 
Finally, neural network models cannot be directly applied in 
business interpretation processes, which in some cases can 
eliminate the neural model from consideration. Therefore, only 
significantly better performance in prediction rates could justify 
the neural network model implementation.  
 

ADVANCED DIAGNOSTICS CHARTS 
The response and lift curves can be augmented with captured 
response curves. In previous chapter we presented definitions 
for cumulative and non-cumulative statistics.  
For cumulative statistics, the numerator is the cumulative 
number of good wells in the first n deciles (between the first and 
the specific decile). For non-cumulative statistics, the numerator 
is the number of good wells in each respective decile.  
For response statistics, the denominator is the cumulative 
number of all wells. For captured statistics, the denominator is 
the total number of good wells. Figure 15 and Figure 16 show 
the cumulative and non-cumulative statistics for three models 
respectively. The common criterion for all modeling and 

predictive tools is a comparison of the expected to actual profits 
or losses obtained from model results. This criterion enables us 
to make cross-model comparisons and assessments, 
independent of all other factors (such as sample size, modeling 
node, and so on). 
 

 
Figure 15. Cumulative captured response curves.  
 
 
 
Average expected profit curves are presented in Figure 17 and 
Figure 18, while the ROI (return on investment) curves are 
presented in Figure 19 and Figure 20. Similarly to other 
diagrams (charts) they were calculated based on the verification 
set and the expected outcome came from the profit table (see 
Table 1). The return on investment (ROI) chart displays the 
cumulative or non-cumulative ROI for each decile of 
observations in the score data set. The return on investment is 
the ratio of actual profits to costs, expressed as a percentage. 
 

 
Figure 16. Non-cumulative capture response curves. 
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Figure 17. Cumulative profit curves. 
 
Classification charts (Figure 10) display the agreement between 
the predicted and actual target variable values for non-interval 
target variables. If the predictive model is useful, then agreement 
will be good, and the tallest bars will appear on the main 
diagonal of the chart. If the predictive model is not useful, then 
agreement will be poor, and the bars will be roughly proportional 
to the product of the row sum and column sum throughout the 
chart. We can display either counts or percentages of the 
predicted and actual target values. Percentages are especially 
useful when at least one of the target levels is rare. Figure 21 
shows a confusion table with definitions corresponding to binary 
outcomes. 
 

 
 
 
 
 
Figure 18. Non-cumulative profit curves. 

 

 
 
Figure 19. Cumulative ROI curves. 
 

 
 
Figure 20. Non-cumulative ROI curves. 
 
 
A measure of discrimination of the ROC curves is the area 
between the specific curve and the diagonal line. This diagonal 
line represents a random choice between positive and negative 
events (no discrimination or no skill line). The ROC curve 
comparison confirms the strength and superiority of the decision 
tree model developed in this project. 
 
Prior probabilities or frequencies effect both the confusion charts 
and corresponding confusion tables. Thus, any diagnostics that 
is based on ‘accuracy’ is not appropriate to compare models 
evaluated based on different samples. 
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Figure 21. Confusion Table – Definitions 
 
 

Figure 22. ROC curves. 
 
 
A true measure of discrimination between positive and negative 
populations is represented by Receiver Operating 
Characteristics (ROC) curves, which are based on a cross-plot 
of sensitivity as a function of (1-Specificity). This definition is 
based on actual (row) counts where: 
Sensitivity is the accuracy of predicting positive events: 

Sensitivity=(True Positive)/(Total Actual Positive)  
and  
specificity is the accuracy of predicting non-events or negatives: 

Specificity=(True Negative)/(Total Actual Negative) 
Sensitivity is often referred as the Hit Rate and 1-specificity is 
called False Alarm Rate. These two descriptors are often called 
True Positive (TP) and False Positive (FP). Furthermore, both of 
them are independent of the prior probability of good and poor 

wells. Thus, ROC curve in Figure 22 does not depend on the 
prevalence of the target outcome in the actual population and 
provides target outcome predictability that is independent from 
the prevalence and decision threshold effects. 
 
A comparison of the prediction accuracy is be presented with the 
Response Threshold charts in Figure 23. 

 
Figure 23. Response Threshold Charts. 
 
The response threshold charts display the prediction accuracy of 
the target level across a range of threshold values. This 
diagnostics is based on predicted counts and column 
percentages (see confusion table). These column percentages 
are often called Positive Predictive Value (PPV) and Negative 
Predictive Value (NPV), which correspond to Probability of ‘1’ 
when predicting ‘1’ and Probability of ‘0’ when predicting ‘0’ 
respectively. 

 
Figure 24. Correct Classification Chart. 
 
A correct classification of both levels for the decision tree model  
is shown in Figure 24. 
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Charts presented in this chapter were generated from a series of 
calculation for thresholds ranging from zero to one. Example two 
confusion tables for two selected thresholds are presented in 
Figure 25 and Figure 26. 
 

 
Figure 25. Confusion table for Threshold=10. 
 

 
Figure 26. Confusion table for Threshold=75. 
 
A cross lift and profit charts are the same as other charts, except 
that they plot the lift or profit on two or more partitions of the 
data. In Figure 27 we use cross lift charts to compare the lift for 
the decision tree model obtained from the training data to the lift 
for the validation data, and to the testing data (40%, 30%, and 
30% of the total observations in these sets).  Differences in the 
performance are expected. However, they might indicate 
potential problems with the model and its robustness 
(generalization) when applied to unknown data sets. However, a 

cross profit chart in Figure 28 shows profit differences between 
different partitions. It indicates much better performance of the 
testing set comparing to the learning and validation sets. 

 
Figure 27. Cumulative Cross-Lift curves for the decision tree 
model. 
 

 
 
 
Figure 28. Cumulative cross profit charts for the decision tree 
models. 
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ADVANCED MODELS 
NEW DATA SETS 
In next stage of development, two additional data sets were 
obtained and merged with the project data base that contained 
the waterflood responses and basic geology. The first set 
contained core data. After loading, this data went though 
intensive process of cleansing, normalization, up scaling, and 
missing replacement. The core data contained: 
• formation sample (SampleForms), 
• lithology (Lithology) 
• sample number (S_No) 
• sample top (Sample_Top) 
• sample base (Sample_Base) 
• thickness in ‘m’ (Thickness_M) 
• three permability meassurements (Kmax_mD, Kvert_mD, 

K90_mD) 
• porosity (Porosity) 
• grain density (Grain_Density) 
• bulk denisty (Bulk_Density) 
• residual oil sateration (Rsat_Oil_Ratio) 
• residual water saturation (Rsat_Water_Ratio) 
• sample formation (SampleForms).  
 
The second data set contained names, tops, and perforation 
lengths in each formation. The formation and perforation data 
were calculated, transformed, and classified for the most 
common formations ELRL, PKSK, BNFF, SHND, and OTHR 
(remaining) formations. Several new parameters and indicators 
were developed to be testing in the modeling development. 
Finally, the whole merged data based was transposed into a set 
with parameters that characterized both wells in each producer-
injector pair. Furthermore, a new parameter was generated that 
characterized the producer-injector connectivity based on the 
producer-injector formations where perforations were shot.  
 

RECENT MODEL DEVELOPMENT 
The latest model development was directed in testing different 
model techniques and optimizing the decision tree models. The 
latest project diagram is presented in Figure 29. 

 
Figure 29. The latest project diagram. 
 

The tree models have been outperforming the neural net and 
regression models. In addition, over-sampling was tested. In 
latest case the learning and validation partition contained 60% 
and 40% of the total number of observations from the project 
database. 
A set of cumulative lift curves together with the exact lift curve Is 
presented in Figure 30. 
 

 
 
Figure 30. Cumulative lift curves. 
 
 

 
Figure 31. Non-cumulative lift curves. 
 
The above two sets of lift curves show near perfect performance 
of the decision tree model. The actual lift curve nearly match the 
exact lift curve. In particular, diagrams show that the first two 
deciles show no misclassifications. At the same time the cross 
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lift curves in Figure 32 confirm the solid model performance. The 
statistics for the testing set is worst than for the learning and 
validations sets. However, it is still overwhelmingly better than in 
the development without the core and completion data. 
 

 
Figure 32. Cross lift curves for the decision tree model. 
 
Such a good performance always triggers a question: ‘Are we 
guilty of model over-fitting?’ In order to answer this question a 
set of models were generated with the over-sampled learning 
and verification sets (60, 40, 0 percentages for learning, 
verification, and testing set accordingly). Lift curves for a 
regression model and two tree models (see Regression, 
Tree2_Mod2, and Tree3_Mod2 models in the lower left hand 
side of the project diagram in Figure 29) are presented in Figure 
33 and Figure 34. 

 
 
Figure 33. Cumulative lift curves and the exact curve. Over-

sampling. 
 

 
Figure 34. Non-cumulative lift curves and the exact curve. Over-
sampling. 
 
Lift curves for the tree models correspond to the exact lift curve, 
which translates to the ‘perfect fit’. This requires further studying 
and is being research. Over-sampling seems to have a 
significant effect on the regression model, which is stronger than 
previously developed model and performs consistently across all 
deciles for both partitions (learning and verification – see Figuer 
35). At this stage models were developed without considering 
the profit matrix and constant costs vector.  

 
 
Figure 35. Cumulative cross lift curves for the regression model. 
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TOOLS AND IMPLEMENTATION  
TOOLS AND MODELING DECISIONS 
The case described in this paper is not complete. Hopefully it 
provides enough arguments for scientific based modeling and 
methodology selection, which should be driven by results and 
their diagnostics.  
Process modeling and data mining are not for amateurs. The 
use and abuse of the advanced mining tools can lead to 
disastrous results. Even, a complete rookie can create a model 
and generate predictions using some of the tools available on 
the market. Advanced modeling relies heavily on data 
manipulation, normalization, transformations, and selection of 
the most important variables, model type, and variety of different 
options when developing and optimizing selected models23. 
The user has to look for diagnostics and interpret results from an 
engineering point of view. Finally, erroneous data manipulation 
and transformation can render the modeling part useless. 
 

COMPUTER DECISION SYSTEMS IMPLEMENTATION  
Production implementation of decision support systems 
introduces an extra layer of complexity. The system 
requirements in cases where humans are replaced by intelligent 
systems expand to lesser-known regions of the systems 
development. User interfaces, data gathering and simple reports 
are not enough. Typically, when models are developed, the 
implementation follows without delays. However, after an initial 
period, the system sponsors, technical staff, and support people 
start to realize that the model implementation was simply a good 
start along a bumpy road.  
In a manual process, a series of rules, user’s perceptions, and 
unwritten rules are applied to each decision. Mistakes are made, 
though their impact is minimized because in manual processes 
these errors are inconsistent. For example, different users apply 
different variations of rules and their knowledge changes in time. 
Thus, even a weak set of rules does not have to generate wide 
spread problems.  
On the contrary, computer based models make decisions for 
many wells in a consistent way. These systems require their 
models to be replaced or modified when the maintenance is 
scheduled. What happens if there are drastic changes in the 
environment and the maintenance is not applied? The answer is 
simple. The non-maintained system happily generates more or 
less useless predictions, which are applied as designed. 
Furthermore, even the best models make mistakes, and an array 
of non-believers and the ‘old guard’ team will find plenty of 
examples ‘proving’ that the system is useless. 
Thus, decision systems should be equipped with a reporting and 
visualization tools based on data dimensions, multidimensional 
reporting, graphics, statistical diagnostics, and the system 
performance diagnostics. In a perfect world any well data 
together with the predicted and the actual results should be 
available to a user in an interactive EIS/GIS system.  

CONCLUSIONS 
This study proved that integrated geological and waterflood 
response parameters allow for the prediction of oil production 
during enhanced recovery processes. Different model types 
were built, which included decision trees, regression models, 
and neural networks. These predictive models were developed 
for two types of target variables. The first target variable 
represented the normalized oil production, which was 
characterized by a well production relative to the whole field’s 
production. The second target variable was characterized by a 
high production binary indicator with two levels (0/1 or 
Good/Poor).  
 
The final model was build for the binary indicator. It was selected 
based on the oil production cut-off. Logistic regression, neural 
net, and decision tree models were developed and compared 
based on their diagnostics. We selected the decision tree model 
due to the best performance. An advantage of the decision tree 

model over other types of models was that it could produce 
models that represented interpretable English rules or logic 
statements. For example, "If netpay is greater than 5m and the 
lag zero gas response is negative, then oil production will be in 
the top 25% of the best production with probability of 80%”.  
 
Statistical diagnostics based on the model verification process 
proved that selecting wells based on models that use geological 
and fluid communication parameters resulted in a success rate 
two to four times better than by traditional methods. The final 
decision tree model showed ‘perfect’ performance without miss-
classification. This requires detailed review and further research. 
 
Furthermore, we showed how a profit matrix might be used to 
utilize model prediction with the impact (cost) of all classification 
outcomes (true positive, false positive, true negative, and false 
negative predictions). 
 
Model based computer decision systems require appropriate 
model selection, model diagnostics, model maintenance 
schedules, and information visualization. Diagnostics of model’s 
performance must be carefully designed and implemented. 
Furthermore, simplicity, interpretation ability, maintenance 
requirements, and stability of models should influence both the 
modeling and the development approach. 
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