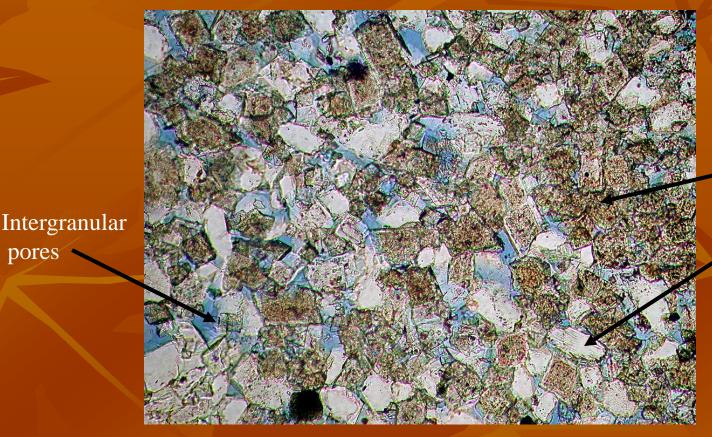
Torquay Formation Reservoir Quality Assessment

Reservoir Evaluation Core Study Torquay Formation

- Sample selection (1-21;11-1; 3-6 W1)
- Petrography
- Wettability restoration for relative permeability tests
- Water-oil relative permeability tests
 Mercury injection capillary pressure tests
 Electrical property tests

Torquay Petrography 1-21-09-31W1 P5 sandy dolostone CA port. 15.8%



CA por. 15.8% TS por. 8.7% Perm. 2.0 md

Dolostone clasts

Clay and mud

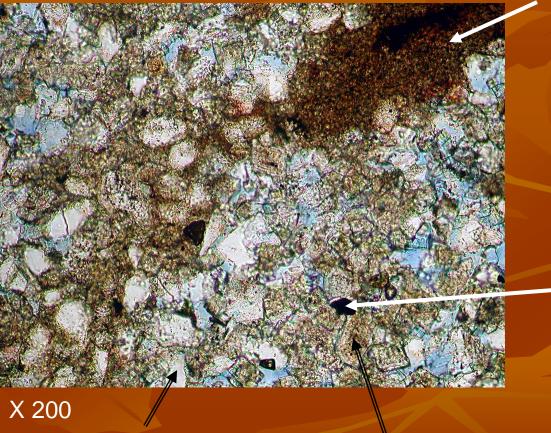
Torquay Petrography 1-21-9-31 W1 P5 sandy dolostone

Dolomite matrix

Quartz grains

X 200

pores


Torquay Petrography 3-6-9-30 W1 P7A silty dolostone

CA por. 15.9% TS por. 9.3% Perm. 2.13md

Laminated shale

Torquay Petrography 3-6-9-30 W1 P7A silty dolostone

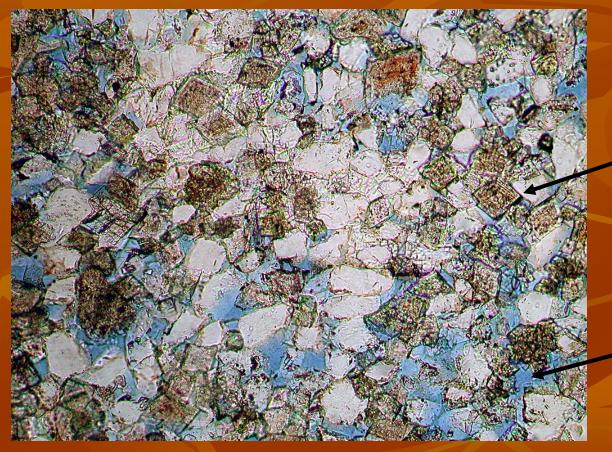
Compacted organic material and clay matrix

Residual oil

Quartz grains

Dolomite matrix

Torquay Petrography 1-21-9-31W1 P 13 dolomitic sandstone

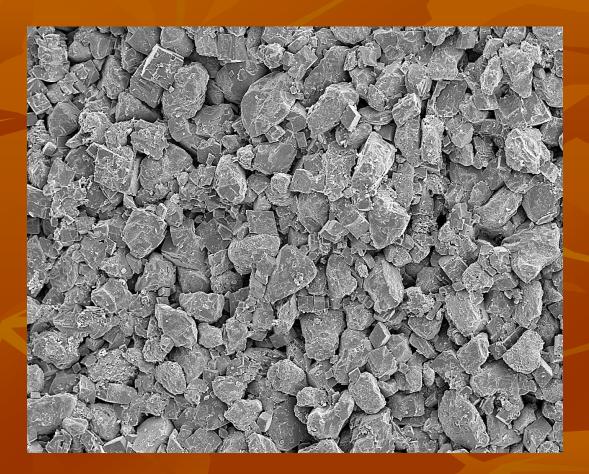

CA por. 17.8% TS por. 13.7% Perm. 68 md

X 10

Good reservoir quality, highly dolomitic sandstone with good effective porosity

Torquay petrography 1-21-9-21 W1

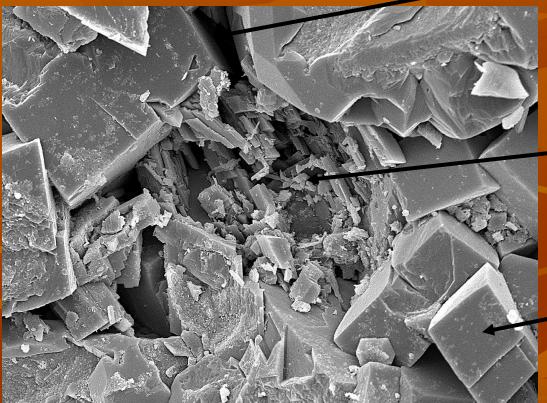
P13 dolomitic sandstone



Quartz grains

Solution enlarged pores

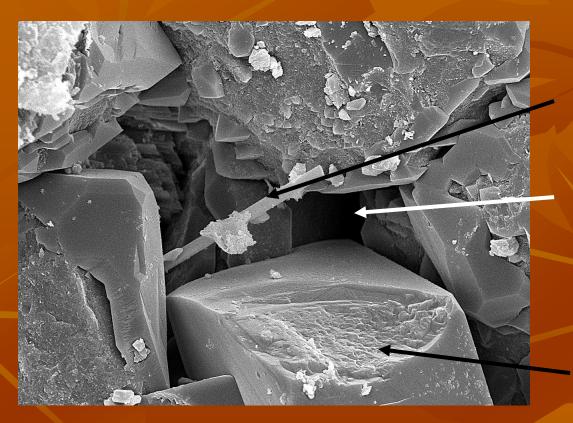
X 200


Torquay petrography (SEM) P13 dolomitic sandstone

Well sorted dolomitic quartzose sandstone

X 150

1-21-09-31 W1 (SEM) P13 cont.

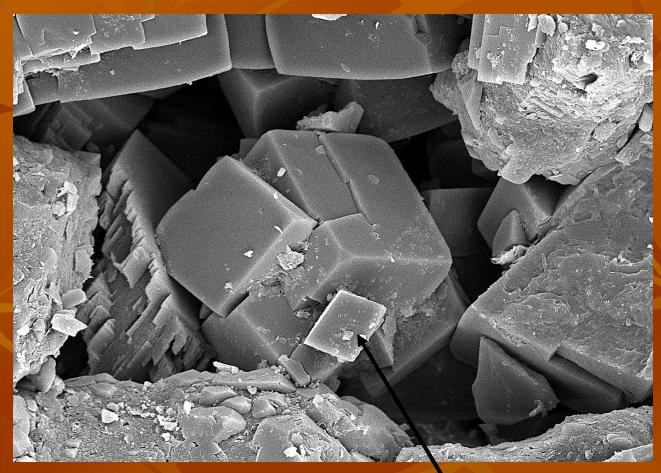

Clean open pores

Feldspar fines

Monocrystalline dolomite

x1500

1-21-09-31 W1 (SEM) P13 cont.


Feldspar fines

Clean open pores

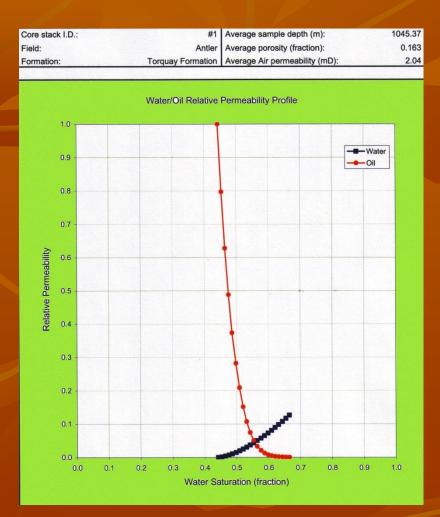
Authigenic quartz

X 2500

1-21-09-31 W1 (SEM) P9

X 2000

Dolomite cement


Petrographic Results

- Examined Torquay samples range from silty / sandy microcrystalline dolostone to dolomitic siltstone/ sandstone.
- Mean size of monocrystalline quartz, silt and sand grains varies from 0.05 to 0.078 mm.
- Grain size distribution: unimodal, moderately well sorted.
- Granual components include monocrystalline quartz grains, scattered rock fragments and detrital feldspar and carbonate grains.
- Matrix consists of mainly microcrystalline dolostone.
- SEM shows that sandstones contain small amounts kaolinite clay.
- Effective porosity is reduced by dolomite, calcite, and anhydrite cements.

Reservoir Evaluation Core Study Torquay Formation

- Sample selection (1-21;11-1; 3-6 W1)
- Petrography
- Wettability restoration for relative permeability tests
- Water-oil relative permeability testsElectrical property tests
- Capillary pressure tests

Water-oil rel. perm. test

Stack #1Medium quality rock

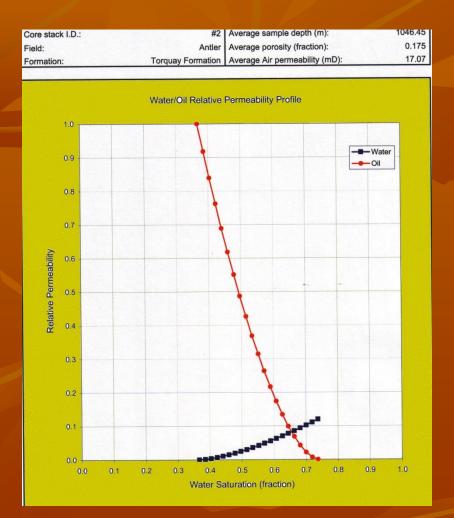
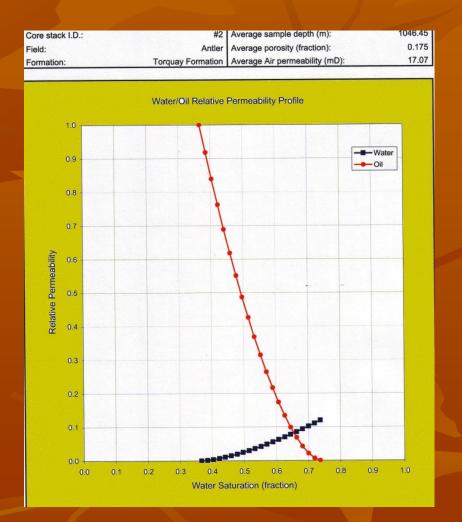

Water-oil rel. perm. stack #2

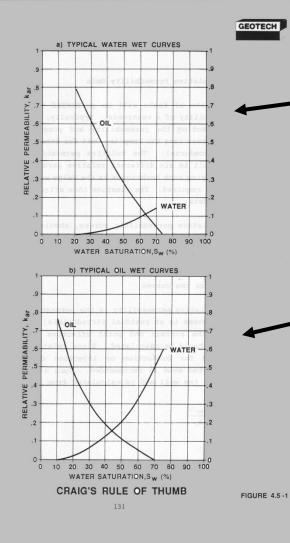
 TABLE 7

 WATER/OIL RELATIVE PERMEABILITY TEST CORE DATA SUMMARY - STACK #2

Sample Sequence from Inlet	Well I.D.	Depth m	Length cm	Diameter cm	Porosity Fraction	Air Permeability mD	
						1	
P14	1-21-9-31W1M	1056.11	5.04	3.78	0.174	14.80	
P5A	11-1-9-31W1M	1041.27	5.07	3.79	0.173	21.80	
P8	11-1-9-31W1M	1041.98	5.16	3.71	0.178	14.60	
Average:		1046.45	15.27	3.76	0.175	17.07	


Water-Oil Rel. Perm. Test

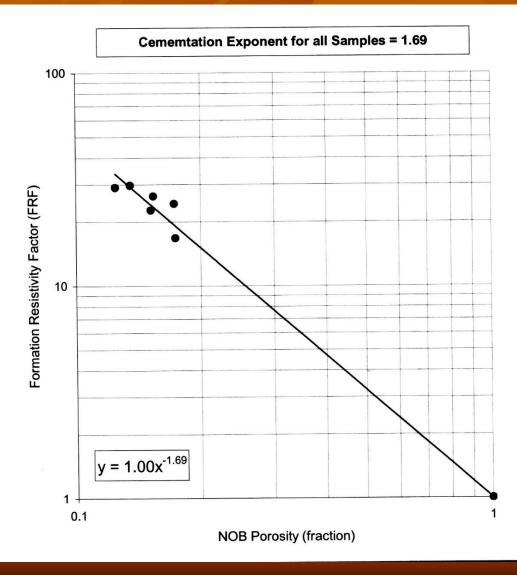
Stack # 2Good quality rock


Oil-water rel. perm. tests

Aver. por. = 16.3% Aver. Perm. = 2.04 md Aver. por. = 17.5% Aver. Perm. = 17.07 md

Typical water wet and oil wet curves

Graig's Rules of Thumb


■ Water – wet

- Swr > 20%
- Satur. for intersection of oil and water curves Sw > 50%
- Ratio of end point rel. perm. < 0.3</p>
- Oil wet
- Swr < 15%
- Satur. for intersection of oil and water curves Sw < 50 %
- Ratio of end point rel. perm.
 > 0.5

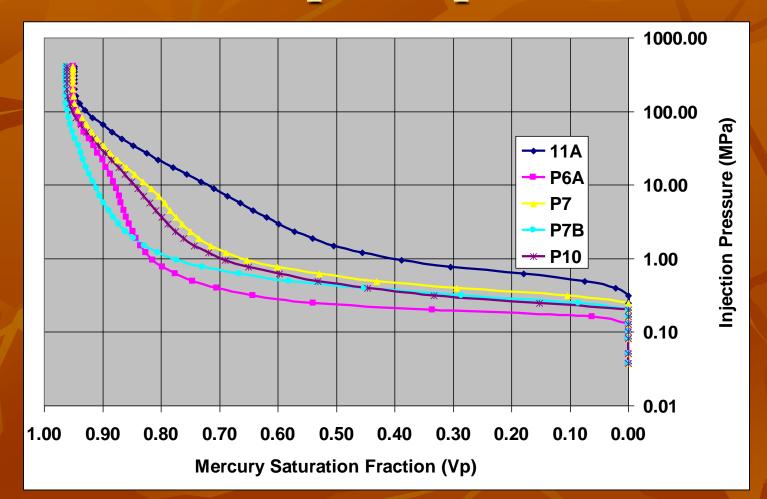
Reservoir Evaluation Core Study Torquay Formation

- Sample selection (1-21;11-1; 3-6 W1)
- Petrography
- Wettability restoration for relative permeability tests
- Water-oil relative permeability tests
- Electrical property tests
- Mercury injection capillary pressure tests

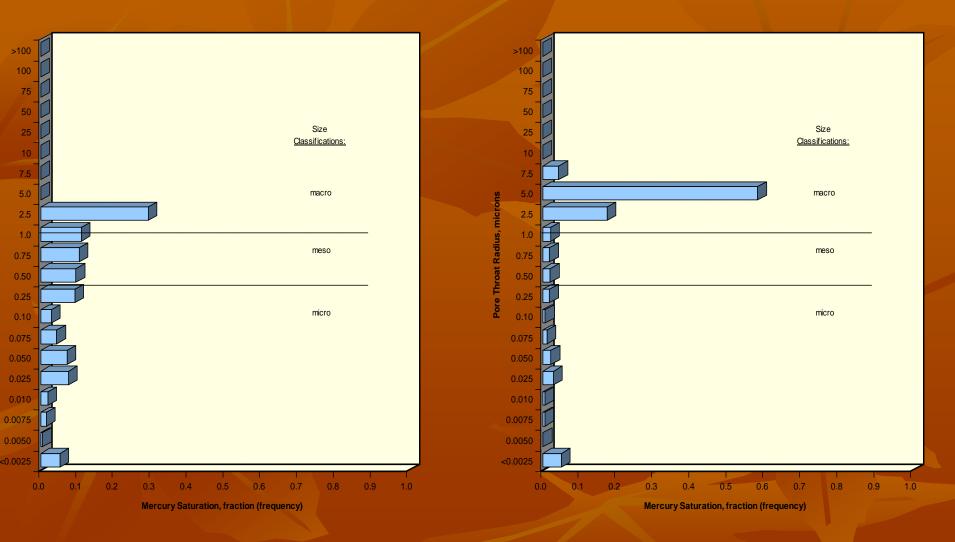
Torquay Formation Factor Test

M=1.69

Reservoir Evaluation Core Study Torquay Formation


- Sample selection (1-21;11-1; 3-6 W1)
- Petrography
- Wettability restoration for relative permeability tests
- Water-oil relative permeability tests
- Electrical property tests
- Mercury injection capillary pressure tests

Capillary Pressure Tests


F											
		SUMMARY OF MERCURY INJECTION CAPILLARY PRESSURE RESULTS									
)											
				AMBIEN			MINIMUM	MEDIAN			
2						MERCURY	VETTING PHASE	PORE			
3					AIB	THRESHOLD	SATURATION	THROAT			
Ł			DEPTH	POROSITY	PERMEABILITY	PRESSURE	AT 14 MPa	RADIUS	BIMODAL		
5	Well_ID	SAMPLE	meters	fraction	millidarcies	MPa	fraction Vp	microns	yesłno		
8	"1-21"	P10	1055.07	0.178	7.870	0.201	0.139	1.67	no, uni		
2	"3-06"	11A	1055.07	0.134	0.880	0.314	0.244	0.513	yes		
3	"11-01"	P6A	1041.50	0.184	48.60	0.128	0.113	3.120	no, uni		
9	"11-01"	P7	1041.77	0.150	4.500	0.25	0.155	1.310	no, uni		
)	"11-01"	P7B	1041.89	0.167	12.80	0.20	0.078	1.750	no, uni		
2											
3											
ŀ											

Technique which is used to obtain an estimate of the amount of pore volume that is accessed by pores of any given radius.

Capillary Pressure Tests composite plots

Pore Throat Size Radius

6A (11-1) por.18.4%; perm. 48.6md

11A (3-6) por.13.4%; perm. 0.88 md

Torquay Core Study Summary

Relative permeability tests:

- Initial water saturations: 0.36 and 0.44
- Waterflood recovery: 0.40 and 0.59 oil in place
- Strong indication of water-wet preferences
- Electrical property tests:
 - Composite cementation exponent m=1.69

Capillary pressure tests:

 Unimodal pore throat size distribution with majority of macropores

Recommendations

- To investigate feasibility of waterflood and evaluate potential problems experienced during waterflood:
 - Liquid-liquid incompatibilities:
 - Precipitation of alkaline earth metals (calcium, barium, strontium, magnesium)
 - Precipitation of iron, aluminum as insoluble carbonates, bicarbonates, sulphides.
 - Precipitation of oxidation-reduction reaction products
 - Liquid matrix incompatibilities:
 - Clay swelling problems
 - Fines migration and plugging of pore throats
 - Dynamic displacement: relative permeability, wettability effects.

 To minimize formation damage drill with low fluid loss gel chem mud or consider compatible oil base mud and drilling underbalanced.