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Abstract
In order to properly manage the depletion of a petroleum

reservoir one must understand its physical characteristics and
their relationship to production performance. Often the chal­
lenge is to interpret an extensive amount of available informa­
tion. This paper presents an approach to this common petroleum
engineering problem using statistical analysis. .

Statistical analysis can provide an improved understandIng of
any reservoir. Beginning with the compilation of a comprehen­
sive database, intrinsic relationships among physical parameters
and production are characterized. Mapping of statistically
processed data allows field-wide interpretation and visual com­
parison with the geological model. Probabilities of production
success can be mathematically determined and used to focus
optimization efforts on areas of the reservoir with favourable
characteristics.

The techniques provide an unbiased appraisal of the available
data that can lead to re-examination of assumptions about the
underlying mechanisms governing production behaviour.
Technical hypotheses can be tested for consistency by determin­
ing if expected correlations are present in the data.

A recent evaluation of the performance of a heavy oil water­
flood at Golden Lake, Saskatchewan, is discussed to illustrate
the application of the method. Modification of well completion
practices and the reservoir depletion strategy have resulted from
the study, and favourable areas for infill drilling have been
identified.

Introduction

The initial challenge when analysing the performance of a
petroleum reservoir is often to marshal and interpret an over­
whelming amount of raw data. Technological advances in reser­
voir characterization and data processing have provided access to
an abundant supply of numerical data. Coincidentally, the impor­
tance of understanding reservoir heterogeneity to maximize deple­
tion efficiency is increasingly recognized. Complex variation of
fluid and rock properties within reservoirs is the norm, demanding
more detailed description and sophisticated technical analysis.
Techniques for processing large databases and distilling critical
knowledge are therefore of growing interest to the petroleum
engineer.

The data overload problem may be addressed by arbitrarily dis­
carding information or by working with averaged values. A com­
promise between these shortcuts and utilization o~ all of the ~ata

available is usually necessary; however, the qualIty of technIcal
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analysis may be sacrificed by over simplification. A method of
extracting the important information concealed in an extensive
dataset is required. Determination of the significant factors con­
trolling production success will usually suggest the proper course
to optimize the field. Statistical analysis techniques are well suited
to achieving these objectives.

Statistical analysis of data is best regarded as a supplement to,
not a replacement for, the engineering analysis typically undertak­
en to solve technical problems. As an integrated component of a
study, it can generate ideas, provide direction, and confirm that
the data actually supports the theoretical conclusions. The value
added by statistical analysis comes from ensuring no important
trends hidden in the data are overlooked, and from the improved
level of confidence in the results.

Petro-Canada initiated a comprehensive technical review of the
Golden Lake heavy oil field in 1994. The scope of the work
included standard waterflood analysis, laboratory experiments,
field tests, and numerical simulation in conjunction with the statis­
tical analysis discussed in this paper. The overall objective was to
determine why the field did not respond as expected to a pattern
waterflood initiated in 1992.

Heavy oil production is technically complex, involving in this
case significant variation in oil viscosity throughout the pool,
foamy oil effects, production of the unconsolidated Waseca sand
matrix, and apparent high permeability water conduits between
wells. Over two hundred production and injection wells were
directly involved in the flood patterns. Some wells exhibited
improved oil rates, some suffered from premature water break­
through, while others showed no response at all. The overall
response was poorer than that of analogous fields where water­
flooding was successful.

The problem was regarded as difficult since the physical pro­
duction mechanisms were poorly understood and an abundance of
data and conflicting evidence were present. Statistical analysis
was employed in an attempt to isolate the significant parameters
controlling the observed field behaviour. It was hoped that
insights into the processes occurring in the reservoir WOUld. be
gained by investigating the relationship of observed productIon
performance to the geological, petrophysical, and operational data
available. A secondary objective was to establish distributions and
ranges for various parameters to conduct appropriate sensitivities
with analytical calculations and numerical simulation.

Methodology
The general approach described in this paper is applicable to a

wide range of problems. The data employed will be specific to the
circumstance, thus the primary focus of the following discussion
is the method. Table 1 summarizes the main steps in the process.
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TABLE 1: Outline of statistical analysis process.

1. Assembly of Database
• Review of Available Data
• Selection of Variables to Include

2. Database Quality Check
• Statistical Measures, Frequency Distributions
• Removal of Bad Data, Replacement of Missing Data

3. Univariate Analysis
• Variable Pair Correlations

4. Multivariate Analysis
• Linear Regression Models
• Determination of Significant Variables
• Calculation of Studentized Residuals, Grouping Wells

5. Discriminant Analysis
• Development of Discriminant Functions
• Determination of Probabilities of Good Periormance
• Combination of Probabilities

6. Data Contouring
• Areal Periormance Visualization
• Geological Model Cross Reference and Checking

7. Non-linear Regression
• Determine Optimal Values of Independent Variables

8. Interpretation of Results
• Explanation of Trends Using Physical Principles
• Hypothesis Testing

Database Preparation
The first step was to select the parameters to include in the

database. Careful initial consideration of parameter selection is
warranted to ensure that all of the relevant data is gathered at the
outset. Involvement of all project engineering staff and field oper­
ations personnel at this stage is recommended. The process of
reviewing the available information and debating how various
parameters are related to production performance can be benefi­
cial in itself, as various avenues of thought on the subject are
explored.

The database assembly work may account for the majority of
the project time. Generally, it is advisable to cast a wide net and
collect as much data as possible. Variables that could reasonably
impact on the problem should not be excluded on the basis of
opinion about what is significant. The objective is to find out, not
pre-judge, what the data can tell about reservoir behaviour.
Highgrading variables by statistical means occurs later in the
process.

An extensive database was assembled on Golden Lake using a
spreadsheet program. Over 140 variables were assigned to the 372
wells included in the study. Table 2 contains a partial listing of the
variables that were selected. The data can be classified into two
broad categories: (I) well completion configuration and produc­
tion history parameters that change with time, and (2) geological,
petrophysical, and geometrical parameters considered constant
during the field life.

TABLE 2: Partial list of variables.

• Well Location Coordinates
• Well Status
• Completion Date
• Position in Waterilood Pattern (corner, edge)
• Proximity to Bottom Water
• Primary Cumulative Oil
• Primary Cumulative Watercut
• Average Primary Oil Rate
• Average Primary Water Rate
• Recovery Factor
• Net Pay (by flow unit)
• Average Porosity (by flow unit)
• Water Saturation (by flow unit)
• Dead Oil Viscosity
• Formation Top
• Past History Code (previous injector, fireflood well, observa-

tion well, etc.)
• Perioration Charge Size and Density
• Workover Count
• Waterilood Cumulative Oil
• Apparent Breakthrough Time

The production history data was taken at monthly intervals dur­
ing three periods of the life of the field: primary production,
waterflood initiation to breakthrough, and post-breakthrough. The
production data was cross referenced by date with well perfora­
tion configuration for wells which had produced from multiple
zones during their history in order to properly determine cumula­
tive zone volumes. Average oil rate, water rate, and watercut val­
ues were calculated by well for each period.

A detailed geological model prepared in conjunction with the
technical study subdivided the Waseca sand into four f10w units,
designated Upper Waseca, and Lower Waseca 0, I, and 2, as illus­
trated in Figure I. Average reservoir parameters were assigned to
individual f10w units at each well.

Univariate Analysis

The compiled database was checked for completeness and
quality to promote confidence in subsequent results. Minimum,
maximum and average values and standard deviations were calcu­
lated for each variable. Frequency distributions were generated as
a basis for removal of bad observations (outliers having identifi­
able causes). Correlations among pairs of variables were tested to
identify any strong relationships; this was done for the periods
prior to and during the waterflood to ascertain the impact of the
flood on average field performance. Spurious values within the
production data known to result from accounting practices rather
than field performance were removed.

-
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FIGURE 1: Golden Lake's Waseca formation.
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y = ao + a1x1 + a2x2+ a3x3 (1)

TABLE 3: Well grouping by studentized residuals.

where; y is the dependent variable
Xl Xnare the independent variables
ao an are the regression coefficients

The multivariate analysis locates correlations among several
variables that are not necessarily evident from univariate
analysis(l).

Linear regression models were developed to determine if rea­
sonable predictions could be made for key dependent variables as
functions of independent geological and petrophysical parameters.
Five dependent variables were chosen for modelling: oil rate,
water rate, watercut, recovery percentage, and waterflood break­
through time. The general form of a linear regression model is
shown in Equation (I).

Discriminant Analysis

ters using linear regression models. The importance of thorough
data collection during the lifetime of a field is highlighted when
statistical methods are applied.

Another complication with the data was distinguishing missing
data from true zero values. The geological flow units were discon­
tinuous throughout the field, requiring input of true zero values
for reservoir parameters for flow units not present at a given well.

Tests were applied to ascertain how well the models fit the
data. The general linear additive models, of the form shown in
Equation (I), accounted for only a portion of the total variance
(R-squared values of 0.1 to 0.3) and represented a poor fit.
Selection of significant sub-sets of variables, those with regres­
sion coefficients not close to zero, necessary to predict dependent
variables, was still possible, however.

The next step was to generate studentized residuals for the five
models. Residuals are the difference between the model predicted
values and the observed values for the dependent variable.
Studentized residuals are produced by dividing the residuals by
the standard error of the residuals.

The studentized residuals were used to classify observations
(wells) into three categories as summarized in Table 3. Those with
negative residuals greater than one formed group N, those with
positive residuals greater than one comprised group P, and those
in between were group O. Linear regression models were then
developed for these groups. The fit of these models to the data
was considerably better (R-squared values of 0.60-0.80). On the
basis of selected cutoff values for the dependent variables, the
wells in group 0 were reclassified into groups Nand P when
required.

Discriminant analysis is a technique used to classify observa­
tions into groups based on selected parameters. The factors com­
mon to the wells contained in the above groups were identified.
Of particular interest was finding the characteristics associated
with wells that tended to be good performers, that is, those with
high oil rates, low watercut, and high recovery factors.

Discriminant analysis employs a learning data set to develop
discriminant functions and a testing data set to compare the pre­
dictions of the functions to actual observations. The DISCRIM
procedure(2) in the SAS/STAT® module allows the use of the same
data set for both functions using the cross-validate option.
Alternatively, observations from one of the well groups could be
used as the learning set, and the resultant function tested against
observations in the other groups.

Since many of the variables involved were not found to be nor­
mally distributed, a non-parametric discriminant procedure had to
be used. Discriminant functions were developed to classify wells
as either good or bad performers. Stepwise discrimination was ini­
tially applied to find the most significant parameters supporting
this discrimination. The probability of membership in the group of
good performers was next determined.

A mapping program was used throughout the project to gener­
ate contour maps of variables to assist in visualization of areal dis­
tributions. Figures 2 through 5 illustrate the type of maps generat­
ed for the Golden Lake South Waseca pool. The calculated proba­
bility of obtaining good oil rates, for example, is displayed in
Figure 3.

A further step was taken in combining the probability maps
obtained from separate discriminant functions through the use of
Boolean operators(3) (union, difference, complement and inter­
sect). Since the discriminant functions are based on several vari­
ables the process of generating the combined probability maps is
equivalent to simultaneously overlaying contour maps of the sig­
nificant variables on a light table, and identifying areas with con­
sistently favourable values. Figure 4 shows the combined proba­
bility of good oil rates, low watercuts, and high recovery percent­
ages. The map of combined probability of production success can
be used to focus optimization efforts and choose infill drilling
locations.

Valuable synergies were obtained by virtue of conducting the
statistical analysis in parallel with the geological study of Golden

Studentized Residuals
<= -1

>-1,<+1
>= +1

Well Classification
Group N - negative
Group 0 - neutral
Group P - positive

Multivariate Analysis

Development of a linear regression model containing only the
significant independent variables (those with large regression
coefficients) is the goal of the multivariate analysis procedure.
The independent variables contained in the final models were
selected with a stepwise regression procedure. In some cases an
R-squared procedure was used to confirm the validity of the elimi­
nation process. The final models were developed by the iterative
elimination of insignificant variables, and standardized estimates
were then used to evaluate the relative importance of the regressor
coefficients. Standardized estimates of coefficients are obtained
by performing a regression on standardized data having zero mean
and unit standard deviation(1). Thus the magnitudes of the resul­
tant coefficients are not affected by the ranges of the original vari­
ables and reflect the influence of each independent variable on the
modelled dependent variable.

As is common in petroleum engineering projects, data was not
available for every variable for all of the wells. For example, core
data was not always present. Thus, a sparse data matrix resulted.
Initially, multivariate analysis was attempted on the original
dataset without replacement of missing values. This eliminates
wells with missing data from the process of selecting the most sig­
nificant variables from the set of all variables. Including fewer
wells degrades the confidence in the results, and makes the mod­
els less stable. To circumvent the problem, several stages of step­
wise regression were performed on smaller sub-sets of variables.
The significant ones identified from these sub-sets were potential
candidates for the complete set necessary to explain the observed
variability in the modelled parameters.

The models generated by this technique consisted of three to
seven independent variables and were based on approximately
fifty wells. Although these models accounted for a considerable
portion of the variability, they were unstable when any observa­
tions were added or deleted. In order to support multivariate
analysis, it was therefore necessary to fill in the missing values.

Missing data was replaced using a grid interpolation process
available in the SAS/GRAPH® module. Each variable was grid­
ded on a 100 m square pattern overlaid on the field map. The
missing grid point values were then added by linear interpolation,
but kriging techniques can be used, if preferred. Missing well data
was then assigned based on the value of the variable at the nearest
grid point.

Ideally, values for all of the variables would be present for each
well, and the process of grid interpolation would be unnecessary.
Although the data replacement process is not without controversy,
it allowed the inclusion of 160 wells in further model develop­
ment and made possible the identification of significant parame-
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TABLE 4: Significant variables in regression models.

Oil Rate Water Rate Watercut Recovery % Breakthrough Time

Lower 2 Zone Net Pay (Upper Formation Top) Well Location (Upper Waseca Porosity) (Lower 2 Zone Sw)

(Lower 2 Zone Sw) (Well Location) (Perf Density) Upper Waseca Sw (Upper Waseca Sw)

Well Location (Perf Charge Size) Lower 1Zone Porosity (Perf Charge Size) (Upper Formation Top)

Perf Density (Lower 0 Zone Porosity) Lower 1Zone Sw (Oil Viscosity)

Lower 1Zone Net Pay

Note: Bracketed values indicate negative correlation-dependent variable increases when independent variable decreases.

• Which variables are most important, based on the magnitude
of the standardized regression coefficients.

• The sign of the regression coefficients. Positive signs indi­
cate positive correlation, and vice versa. For example, oil
production rates would normally be positively correlated to
permeability, and negatively correlated to watercut.

• Which variables, if any, are present in all of the models.
• Which variables are significant in both the regression mod-

els and discriminant functions.
• Which variables allow distinction between classes of wells.
• Which variables are controllable by the operator.
The interpretation continues with the development of explana­

tions for the statistical results on the basis of multi-diciplinary
knowledge of the field and accepted scientific principles. Several
situations can arise during this phase of the analysis:

• The causal link is obvious, as in the correspondence of high­
er oil rates with better permeability. Nevertheless, areas of
the field with low rates despite high permeability may be
present-a discrepancy requiring consideration and
explanation.

• An expected correlation is not present. Prior to embarking
on a detailed statistical analysis there will likely be pre­
existing ideas about causes of the observed reservoir behav­
iour. Consequently, certain correlations will be expected in
the data. For instance, water production might be attributed
to edge water influx, in which case a correlation of watercut
with proximity to known edge water is expected. The
absence of the correlation would provide information as sig­
nificant to the interpretation as the identification of a strong
correlation, refuting or confirming the original hypothesis
respectively.

• The significant factor or factors among many possible caus­
es for a given observation is identified. For example, oil
rates may be strongly correlated to the characteristics of one
geological flow unit, but not the others. This result may indi­
cate the layer responsible for contributing most of the
production.

• The data suggests a behaviour which is not easily explained
or contradictory to accepted engineering principles. The data
can force a re-thinking of the production mechanism that
may ultimately yield useful new knowledge. Assuming the
integrity of the data leading to the anomalous conclusion is
confirmed, hypotheses to explain the results should be
developed and field tested. In Golden Lake, the data indi­
cates that oil rates may not increase as wells are pumped off.
This is contrary to both the fluid flow equations and intu­
ition. In this case, it is speculated that the oil production may
be hindered by dramatic viscosity increase occurring at very
low pressures, as the well is pumped faster to lower the fluid
level down to the pump intake. The suspected viscosity
increase as the oil foams has been observed in the laborato­
ry. The data shows a negative correlation between pump
efficiency and stroke rate, suggesting that foam is increas­
ingly present at the pump when a well is sped up to a lower
fluid level. No testing has been undertaken to validate this
hypothesis to date, but the statistical process indicates the
need for such a test.
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• A false deduction is made from valid data. An illustration is
the dependence of cumulative recovery on the time a well
has been on production. If the database did not include pro­
duction time, new wells or wells with low cumulative pro­
duction time and low recovery could be erroneously classi­
fied as having poor recovery due to poor reservoir quality.

Interpretation for Golden Lake
As mentioned previously, models were created to determine the

primary factors influencing oil rate, water rate, watercut, recovery
percentage, and breakthrough time. Table 4 summarizes the sig­
nificant variables in each model. The sign and magnitude of the
standardized coefficients indicate the direction of influence and
relative importance of each independent variable on the five
dependent variables.

Oil Rate
The most important factors here are the pay thickness and

water saturation in the Lower Waseca 2 flow unit, the east-west
location in the field, the net pay thickness in the Lower Waseca I
flow unit, and the perforation charge density. The net pay in flow
units I and 2 may be interpreted to provide most of the oil produc­
tion from the Waseca; this is consistent with the flow unit perme­
abilities observed. That the water saturation in flow unit 2 is
inversely correlated to oil rate is interesting since this factor was
not significant to water rate or watercut. The relationship may be
related to lower oil reserves where water saturations are higher.
The wells toward the southeast end of the field tend to have higher
oil rates, a ret1ection of both better reservoir quality, and less pres­
sure depletion corresponding to the more recent development of
the south portion of the field. The impact of perforation density
was discussed in the non-linear regression section.

Water Rate
This is affected primarily by the structural elevation of the

Upper Waseca zone, the east-west location in the field, the perfo­
ration charge size, and the porosity in the Lower Waseca 0 t10w
unit. The structural connection with water rate makes sense since
there is bottom water located around the edge of the pool. The
field location influence may relate to the development timeframe
or to the presence of perched water and edge water on the east
side of the field. The porosity in the Lower Waseca 0 zone may be
a factor in water rate because the bottom t10w unit provides a path
for the bottom water to move up structure; the water has slightly
greater density than the oil. The inverse relationship of perforation
charge size to water rate is not well understood, but may be asso­
ciated with higher oil rates being produced with larger perfora­
tions, or evolution of perforating techniques as the field was
developed.

Watercut
This is strongly influenced by location in the field and perfora­

tion density, which may be explained in the same way as the rela-
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FIGURE 6: Golden Lake's production history.

tionships to water rate. Additionally, the porosity and water satu­
ration of the Lower Waseca 2 flow unit are proportional to water­
cut. This suggests that connate water is mobilized in this zone
along with the oil which may explain why wells that are high on
structure and not adjacent to known bottom water exhibit increas­
ing watercuts during primary production. Proximity to bottom
water relates to higher watercuts, perhaps because water mobi­
lized in the formation generally provides a conduit for bottom
water to encroach.

Recovery Percentage
This is positively correlated to the water saturation and inverse­

ly related to the porosity in the Upper Waseca zone. The correla­
tion may be due to the sporadic completion of the zone-where it
contains a significant oil volume, the overall recovery from the
entire section appears lower. As expected, the recovery percentage
is inversely related to the dead oil viscosity which varies signifi­
cantly throughout the field and is well correlated to structure.
Perforation charge size is inversely related to recovery percentage
for unknown reasons.

Breakthrough Time
This was established from changes in the watercut trend of

each producing well following initiation of water injection.
Breakthrough time is inversely correlated to structural elevation,
and the water saturation in the Upper Waseca and Lower Waseca
2 zones. The correlation indicates that more water initially present
results in quicker breakthrough. This is consistent with the
hypothesis that primary production mobilizes water in place. The
correlation to elevation is partially due to the quick breakthrough
in the structurally high centre of the north pool which was previ­
ously waterflooded (from 1971 to 1981).

Conclusions about the Golden Lake field were derived from a
multi-faceted technical study that included geological modelling,
field testing, laboratory experiments, and numerical simulation in
addition to the statistical analysis. The information from the statis­
tical work was used as a cross-check and catalyst for further
analysis; thus it served to both support and direct the other work.
The statistical findings were tested in the numerical reservoir sim­
ulation model to confirm that it performed in a manner consistent
with the data. The statistical distributions of variables were used
to select appropriate ranges for simulation sensitivities. This link­
age to the data provided some validation of the model, and nar­
rowed the options considered for obtaining a history match.

It is unlikely that any single component of the technical study
would have provided the understanding obtained from the syner­
getic combination.

In summary, the main conclusions are:
• The statistical analysis augmented the technical study of

Golden Lake by providing insights into information con­
tained in the field data that are not apparent from unaided
inspection.

• The significant variables impacting on key performance
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variables (oil rate, water rate, watercut, recovery factor, and
breakthrough time) have been identified, as shown in
Table 4.

• The waterflood breakthrough mechanism was water mobi­
lized by primary production and prior waterflood projects in
the field. Water breakthrough was related to a free gas satu­
ration created by primary pressure depletion, as shown by
pattern similarities in the contour maps of water production
during the flood and primary oil production. Overall flood
performance was impacted negatively by viscosity variation
which is strongly correlated to structural elevation within the
pool and to the degree of pressure depletion which correlates
to geographic location of wells within the pool. These con­
clusions do not arise from the statistical analysis alone, but
from the integrated technical study. Taken together, these
results were sufficient to make it clear that the waterflood
could not succeed or meet its performance expectations, thus
it was terminated.

• Completion of wells could be optimized by using 30 to 34
gram perforation charges and high shot density.

• Selection of favourable areas to conduct further develop­
ment work is possible utilizing the probability of success
maps and the conclusions from the statistical models.
Completion of the Upper Waseca zone in some wells may
provide additional reserves, and infill drilling if economical­
ly justified can now be targeted within the field.

The Golden Lake Waseca waterflood was terminated based on
the results of the technical study and the improved understanding
of the production mechanism. The statistical analysis contributed
significantly to the new understanding by forcing a congruence
with the that returning the field to primary depletion evidence of
the raw data. Figure 6 illustrates the positive impact on oil vol­
umes over the period from March 1994 to January 1995.
Substantial operating cost reductions were also achieved. The
field is presently being optimized on primary production, and may
be a candidate for application of future EOR technologies or infill
drilling.

Limitations and Cautions
Appropriate use of statistical analysis for resolving petroleum

engineering problems requires awareness of its limitations. Valid
concerns may exist about the quality and completeness of avail­
able data. However, used with appropriate caution, the techniques
are not only useful, but may be critical to the solution of problems
involving large quantities of data.

The capability of the statistical process can be limited by the
incompleteness of the database, and error/noise in the data that
will always be present to a degree. Dynamic changes in the pro­
duction parameters are lost due to taking averages over time.
Practical aspects of data collection may have an influence; for
example, production volumes may be allocated back to individual
wells based on infrequent capability tests. Factors such as regula­
tory limits on production or facility constraints may obscure true
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