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ABSTRACT 
 
This paper presents an integrated approach to data 

interpretation during pool or field development.  The 
methodology is based on the integration of data at 
different levels of resolution, multivariate statistical 
analysis, and advanced computer graphics. 

 
Statistical techniques compress and organise large 

amounts of data into a small set of information.  They 
aid in the identification of the most significant factors, 
any valid relationships, and patterns hidden in 
geological databases.  Statistical processing estimates 
the degree of uncertainty  surrounding exploration 
events, while visualization techniques provide a 
presentation and interpretation tool.  Special attention 
has been given to the application of scientific 
visualization for presenting and analysing 
multidimensional data sets.   

 

The paper explains how to convert multidimensional 
geological data sets into a single parameter defined as 
the production probability. This parameter is visualized  
together with the three-dimensional properties of the 
formation.  In addition, the paper presents a method for 
overlaying different multivariate data sets representing 
non-overlapping sparse matrices.   

 
The techniques presented in this paper improve the 

testing of geological hypotheses and lead to advances in 
the understanding of "cause and effect" relationships 
between formation properties, field activities, and well 
performance. 

 
 
INTRODUCTION 
 
The methods and techniques described in this paper 

are useful in identifying any valid relationships and 
patterns hidden in exploration and development 
databases.  In general, geological data is 
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multidimensional, often noisy, nonreproducible and 
worst of all, the majority of geological samples are 
mixtures of simpler components.  Statistical and 
numerical methods can help to unmix these samples, find 
the original compositions of sample data, find variance 
and patterns, and define and test geological hypotheses 1. 
These techniques help to summarise the multivariate data 
and relate it to geological events.  In addition, they help 
to identify the most important factors, which are then 
used to develop the predictive models. These models can 
be quantified, and used to direct exploration and 
development efforts in areas with the highest possible 
potential.  Computer graphics and specifically, scientific 
visualization, improve the interpretation process of the 
data or results of the statistical analysis 2 ,3, 4. 

 
Statistical analysis and scientific visualization were 

applied to estimate the production capacity or production 
probability based on available geological, petrophysical, 
and engineering data in a naturally fractured reservoir.  
Results of the analysis were used to provide answers and 
build hypotheses in the exploration process.  Statistical 
models allowed for the selection of regions of interest or 
specific sites (wells) with a higher potential than the 
surrounding locations. 

 
The following is a list of steps  in the analysis: 
-development of the integrated data base 
-univariate analysis with the necessary data checks 
-estimation of pairwise correlations 
-estimation of correlations between groups  
 (canonical correlations) 
-development of mathematical models to predict 

 production  rates 
-development of models which discriminated 

 between good and poor performers 
-visualization of data and models.   
 
The next section presents the most important steps of 

the analysis. 
 
 
DATA ANALYSIS 
 
Data Base 
 
The project data base contained geological, 

petrophysical, DST, and completion parameters. The 
geological and petrophysical sets contained tops, net 
pays, length of perforations, and petrophysical 
parameters representing average estimates for four zones. 
Reservoir pressure and initial production came from DST 
tests.  The petrophysical parameters (e.g. resistivity, 

neutron porosity) were estimated using different 
averaging methods.  Arithmetic, geometric, and harmonic 
means were calculated.  Data transformations and the 
selection of variables into the final models were guided 
by frequency distributions and diagnostics from the 
multivariate procedures 5. 

 
Parameter Selection 
 
Stepwise regression, backward regression, and 

Rsquare regression procedures were used to identify the 
independent variables which significantly influence the 
outcome of the dependent variable. The stepwise 
discriminant procedure selected the best subset of 
parameters for predicting well membership into a 
poor/good classification. 

All possible subsets of variables were tested by 
adding and deleting variables one at a time until a 
reasonable stopping point was reached.  The diagnostics 
were used to determine whether the models adequately 
represented the data upon which they were based. The 
diagnostics indicated when more terms should be added 
to the model, when variables should be transformed, and 
how to identify outliers 6,7. 

 
Numerical Models 
 
The optimal set of parameters was employed to build 

valid statistical models which supported geological 
interpretations. Regression techniques were used for 
quantitative variables (continuous scale). The dependent 
variable was associated with the oil/gas production rate.  
In addition to the quantitative variables, predictive 
models incorporated qualitative variables, such as the 
perforation presence in the specific formation.  A good 
regression model with six variables was developed which  
predicted an average oil production (r2=0.8). The length 
of the perforation intervals in each of the formations had 
a considerable effect on the predictions. Observations 
with major deviations between predicted and observed 
values were attributed to completion problems or 
erroneous production data. The impact of completion 
techniques has been observed in other  studies 8. 

 
The major thrust of the study was to develop 

discriminant models. Thus, a function was developed that 
differentiated between good and poor wells. The 
discriminant function was based on the well quality and 
represented a linear combination of variables which 
supported the best discrimination between the two 
classes of wells in the data set.  These classes (good and 
poor producers) were based on the initial production and 
the selected cut-off value.  The second group (poor) 
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included abandoned wells. The discriminant analysis 
acted in this study as a tool to overlay multidimensional 
information.  The discriminant function was built on a 
base of the selected set of variables from the stepwise 
discriminant analysis.  The verification of the function 
was done on a test set.  The discriminant analysis was 
performed with two data sets: a learning and a testing set 
6.  These sets were created by random selection of the 
observations from the initial data set.  The 
misclassification error in the testing set was around 25%. 

 
The final discriminant function was used to classify 

each of the observations into one of the groups. The final 
result of such analysis was the posterior probability of 
membership in each group. This probability was defined 
as the production probability, and was colour-coded on 
the surface of the three-dimensional structure (see Figure 
1). Details of the probability visualization can be found 
in the next section.  

Furthermore, wells which had a higher production 
potential than reported (e.g. abandoned wells that were 
reclassified into producers) became candidates for 
workovers. Those wells were probably damaged during 
the completion process. 

 
 
Visualization 
 
Advanced visualization techniques were used to 

interpret and integrate results from the discriminant 
analysis.  In the visualization process, a probability (p), a 
scalar function of three variables in a form p=p(x,y,z), 
can be regarded as a function which maps the fourth 
dimension (p) into three dimensions.  Volume data can 
be displayed with the use of a three-dimensional 
analogue of the two-dimensional contour plots and 
pseudo colour maps in the form of isosurfaces 9, 3D 
points 10, 3D self-emitting voxels 11, translucent voxels 12, 
colour-coded density data 4, or opaque voxels 13. 

 
  Data processing involved a sequence of operations 

which converted the probability set into computer 
images.  Initially, the production probability was 
transformed into a form suitable for visualization 
operations.  Operations such as gridding and 
interpolation were applied because real data was 
provided on a sparse grid. Furthermore, each 3D point 
acquired a colour that was associated with the 
probability, opacity, surface properties (reflection), and 
volume properties (refraction). Optionally, this stage can 
lead to a series of realisations in the experimental space, 
with additional time dependence (if animation is 
required). 

 
 Next, the rendering process was performed on 

polygonized surfaces or volume cells produced from a 
model.  During this process, the data model and 
mathematical description of the environment were 
processed by computer to determine object position, 
viewing direction, visibility, colour, light source, 
reflection, refraction, and light scattering 14. The final 
images were visualized on the graphics workstation. 

 
Our visualization of the geological structure, together 

with the original data and the results of the statistical 
analysis, is related to surface and volume mapping in 
three-dimensional space 9 ,15. 

 
Examples of the surface mapping are presented in 

Figure 1 and Figure 2.  Both images show the same 
geological structure visualized from two different 
observation points. The variable of interest (production 
probability) is mapped as colour on the surface of the 
uppermost formation.  Formations are represented only 
by the surfaces of their tops, and these surfaces are 
represented by polygons formed on the grid pattern. In 
volume mapping (Figure 3), the volume occupied 
between two subsequent tops is modelled as an element 
of constant properties (colour, opacity, etc.).  Each 
volume is mapped into a screen space by its polygonal 
faces. 

 
Shading and hidden surface computations can be 

done using a variety of rendering engines. In both cases, 
rendering was performed with an A-buffer renderer 16.  
Phong shading was applied in order to obtain better 
visual effects without the artefacts associated with 
discontinuities along the polygons and volume elements.  
Phong shading exaggerates the solid appearance of the 
cells, while effectively blending neighbouring cells 
through the normal interpolation 14. 

 
 
Overlaying Probability 
 
Boolean operations (union, complement, intersection, 

and difference) can be applied to posterior probabilities.  
If applied recursively, these operations allow us to 
construct expressions to add and extract regions of interest 
from the statistical solutions, and enhance their graphical 
representations.  Furthermore, boolean operations can 
overlay  different responses recorded at two different grid 
patterns 8.  

Below, we define these operations for two sets, P and 
Q, which represent posterior probabilities.  We assume 
that the probabilities are spatially defined as p(x,y,z) and 
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q(x,y,z) and that they are derived from two discriminant 
functions.  The operation formulas are: 

 
intersection 
 
P Q p x y z q x y z� = •( , , ) ( , , )  

 
complement 
P = −10. ( , , )p x y z  

 
difference 
P Q P Q− = �  
= − •p x y z p x y z q x y z( , , ) ( , , ) ( , , )  
 
union  

P Q P Q
p x y z q x y z p x y z q x y z
� �=

= + − •( , , ) ( , , ) ( , , ) ( , , )
 

 
The above operations do not form a complete boolean 

algebra set due to the fact that P P P� ≠  and 

P P� ≠ Ο . 
 
 
Interpretation 
 
Colour-mapped three-dimensional structures can 

greatly enhance the visual interpretation of geological 
parameters and the results of statistical analysis. The 
images presented here show differences in the probability 
of success along with the geological structure.  Spatial 
structures of the production probability correspond to 
overlays of several contour maps on the 3D light table. 

 
The volume representation in Figure 3 shows not only 

the production probability along with the structure itself, 
but also the netpay of the formations.  A review of the 
probability and the netpay of the images explained why 
the netpay was negatively correlated to well 
performance.  It proved that the structurally low areas, 
and the presence of fractures, had a significant effect on  
well performance.  At the time of the study, the data set 
did not include the fracture orientation or density. 

 
One needs to apply thresholds or cut-off values of 

probability as criteria for the interpretation and selection 
of areas having higher chances of success.  For example, 
an 80% or 90% probability of the well being a producer 
can serve as a criterion.  A choice of a high probability 
value as a cut-off will cause some of the potentially 

producing areas not to be included in the area of  interest.  
On the opposite side, a cut-off value below the 0.8 level 
will increase the risk of nonproducers. However, in the 
second case, one will not overlook too many potential 
producers. 

 
Special attention should be given to two areas of 

interest which are based on two probability tails.  The 
first tail corresponds to the highest values of the 
production probability, and the second tail corresponds 
to a very low production probability.  Areas 
corresponding to these tails can be reviewed by 
interdisciplinary teams to understand the differences and 
build new hypotheses.  Special attention in the areas of 
high production probability should be given to all 
abandoned wells.   

 
This approach can be the most effective in reservoirs 

where formation damage is suspected, or where wells 
may have been abandoned due to the misinterpretation of 
the DST tests.  On the other hand, the area outside of 
these two tails often represents the opportunity area, 
where advanced technology can improve the exploration 
odds.  

 
 
CONCLUSIONS 
 
In this study, different data sets were integrated and 

analysed with multivariate statistical methods. 
Geological structure and the production probability were 
visualized in the form of three-dimensional surfaces or 
volume cells.  

The colour schema provided a way to present the 
results of the statistical analysis, test the correctness of 
the geological hypotheses, validate the analysis 
processes, and enhance the interpretation of results. 

The methodology can help to focus activity in areas 
with the most chance of success, areas requiring 
optimisation, areas where infill wells should be drilled, 
or areas where significant numbers of wells do not 
behave as expected.   

This methodology is recommended for a quick 
analysis of reservoirs or fields being considered for 
optimisation, acquisition, or development. 

 In addition, these techniques help to link members of 
interdisciplinary teams by integrating all available data 
sets and selecting the most important factors without any 
bias. 
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