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Abstract

Adding new wells and new production in existing fields under
Enhanced Oil Recovery (EOR) is particularly important in mature
fieldsthatarecharacterizedbyalonghistoryoffieldactivity. Different
drilling programs, a variety of field treatments, well conversions
and new injectors add many layers of complexity and uncertainty
10 the existing effects of geological, completion and production
factors.

Surveillance and prediction of responses caused by injected
fluids in fields with dozens of patterns and hundreds of wells
calls for computer-based systems that estimate responses based
n numerical and statistical solutions. This is especially impor-
ant when geological understanding is very weak (i.e. no core,
no log data).

This paper shows how results from EOR surveillance pro-
grams can be integrated with geological data. Furthermore, this
paper shows how to build predictive models for production esti-
mates based on injection responses and geology. These models
support a two to three times more accurate selection of wells with
aigh oil production during EOR than historically implemented
selections.

Included in the paper are practical tips on how to select the best
model and derive solutions with decision trees that are equiva-
ent to sets of English-based rules. Solutions from decision trees
are compared with solutions from logistic regression and neural
networks. This comparison deals with the statistical accuracy of
model predictions, interpretation ability and assisting in applying
these models to support field decisions.

Introduction

The main goal of the study was to develop and test a model that
buld predict production performance during waterfloods. In pre-
Zictive modelling, regression is traditionally applied to calculate
-ontinuous target variables"). Models that predict binary response
ariables use logistic regression®. A binary target variable is char-
zcterized by two events. They can be of a numerical nature (0 and
where zero represents a non-event and one represents an event.
vlternatively, a character string with two outcomes (e.g. No and
es) is often applied.
In the case of a continuous target variable, we may predict the
“uid rates of oil, water, gas or the total fluids. The binary 0 or
target variable can represent a low or high production output,
~=spectively. A production cutoff can be based on economical or
engineering criteria applied to the actual rates or volumes in a spe-
zific time period.
This paper presents the principles of a numerical model devel-
pment for predicting well performance during waterflood in the

Pekisko B Field. The production performance predictions were
based on geological and injection response parameters. The injec-
tion response parameter definition and non-numerical integration
with geological data was presented in an earlier paper®.

In this paper, the performance predictions were done for a bi-
nary target variable that identified wells with good performance.
The performance was based on the actual normalized volume of
production. A well’s normalized production was defined as a ratio
of the well production in a specific time period, to the total field
production in the same time period. A binary target variable (indi-
cator) of two levels (0 and 1) was assigned based on the normal-
ized production. If a well production placed it in the best quartile,
then the binary target value was assigned a value of one; otherwise
it was assigned a value of zero.

The above target variable was predicted based on the geolog-
ical and the injection response data sets. The injection response
variables were identified in the earlier part of the study®. They
included oil, water, gas and total fluid responses to the injection
changes. These responses were calculated as a Spearman non-para-
metric correlation between the injected rates and the specific pro-
duction rates (oil, water, gas and the total fluid). The geological
set contained Pekisko B top subsea, Pekisko B subsea of oil-water
contact and Pekisko B netpay for all wells in the field.

For this work, we have built and analyzed logistic regression,
neural network and decision tree model types. These models were
developed to predict the probability of high oil production. A mod-
elling input data set contained 480 observations that were split into
a learning set with 40% of the observations, a validation set with
30% of the observations and a testing set with the remaining 30%
of the observations™* ¥,

This study identified large performance differences between the
prediction powers of models developed with different modelling
methods. Specifically, the final decision tree model outperformed
the logistic regression and the neural network models. The strength
of the decision tree model originates from the fact that each se-
quential node split (decision branch) does not have to have conti-
nuity along the boundaries between different regions or segments
defined by predictive variables.

Integration of geological and response variables in a model al-
lowed the development of rules that would support predicting a
well’s performance during EOR. Interpretability requirements
favoured logistic regression and especially decision tree models
because of their English-based nature of rules. Models based on
neural networks did not prove superior to other model types and, at
best, they provided limited interpretation support of predictions.
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Injection Responses

Our injection response evaluation is based on the injected and
produced rates. The methodology was developed from experience
with field studies for Golden Lake, Swan Hills, Midale, Valhalla,
Goose River, Cactus Lake, Mirage and Pekisko B®). Related dis-
cussions can also be found in earlier publications® 7. The tech-
nique is applicable to vertical and/or horizontal wells for injection
surveillance and optimization. It can play an essential role in
studies of underperforming fields or acquisition targets. Further-
more, the same technique can detect communication between pro-
ducers and can help in designing new waterfloods,

Relationships between produced rates of oil, water, gas or the
total fluid, and the injected rates of water can indicate fluid com-
munication through a reservoir. However, typical oil fields can ex-
hibit complex geology across a field or across patterns, accidental
schedules of wells and/or random changes in the injection and
production rates. Together with the shear volume of data, manual
analyses may lead to ambiguous and biased associations between
producers and injectors. Our methodology technique provides a
rigorous and unbiased approach. It is based on the Spearman rank
correlations between the injected and produced rates, over a period
of time series®, These correlations, and the time lags between the
injection and the associated production rates, allow us to compress
these series of rates into a set of simple parameters. We use these
parameters to estimate oil, water, gas, and total fluid responses for
every combination of injector and producer.

In regular patterns with vertical wells, the correlations (oil, gas,
water and total fluid responses) and associated time lags can be
presented in the form of a single or composite star and spider dia-
grams. In an integration process, sets of composite diagrams were
overlaid with contour maps of formation tops and netpay®®). These
presentations helped find the significant relationships between the
producers’ responses and the underlying geology and helped in un-
derstanding field behaviour. These composite diagrams can also
help to:

* evaluate sweep efficiency;

* select areas for infill programs;

* identify ineffective injectors;

* identify producers without support;

* better estimate the production allocation;

¢ find areas with fluid losses; and,

* develop communication/correction maps for reservoir

simulation.

For a detailed description of the methodology and visualization
techniques, please refer to earlier papers®: 6.7,

Presented here is the numerical integration of the waterflood
responses, geology and other available data sources. This gives
a more formalized approach than previously applied by over-
laying contour maps with different parameters® %, Furthermore,
it enforces consistency, removes the analyst’s bias and allows for
generating English-based rules, which can be applied in field de-
cisions. The advantage of the approach increases for fields with a
large number of injectors and many years of history.

Model Development

The modelling process described in this section is characteristic
of a data-driven model development® 1. Custom programs were
used to load, format, summarize and transform data from the ex-
ternal data sources. The final data set(s) formed a project database.
Flat files, Excel tables, archived files and databases provided the
required interface for production and geological data sources.

Initially, a set of programs was developed which called on a
variety of statistical procedures. These procedures included re-
gression, logistic regression and discriminant analysis!"* 9, This
project involved numerous iterations, which included data manip-
ulations, data analysis, model development and reviews of their
performance.

We developed and refined three different model types,
which were based on regression, neural networks(!!: 12 and de-
cision trees!> ') The selection of variables, diagnostics and
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FIGURE 1: Project flow diagram.

interpretation were heavily used to justify each of the developmer
steps and directed further research. Descriptive statistics playec -
significant role in summarizing data, generating categorical var-
ables and defining normalized parameters. These additional car=-
gorical variables had a triple purpose. First, they represented init:=
segmentation based on ‘known’ geological knowledge and o
served distributions. Secondly, some of these categorical variabl=
were generated for the model performance testing, verification
performance segments based on residuals and verification of ur-
tested hypothesis. Thirdly, some of the categorical variables repre-
sented a hierarchy of dimensions (geography, well type and tim=
and were designed to support multidimensional reporting of his-
torical data and model predictions.

Project Diagram Flow

A project flow diagram for the well performance prediction
ranking (based on normalized oil production) is presented in F igure
1. At one point, this diagram contained three decision tree mode !
and the same number of other model types. These models were usec
to compare one-type models. In particular, they compared differen
neural network or decision tree models. For example, we tested =
variety of neural network models with a different number of hidder
layers and direct links between the input and output layers. Sim -
larly, the decision tree depth, the splitting criteria, splitting var:-
ables, the business interpretability and the misclassification rates
were compared before the best tree model was selected.

The process flow started with the Input Data Source nods
This node mapped data and assigned additional variable attributes
that were required by modelling nodes (Regression, Neural Ne:-
work and Tree). These attributes included the model role for eacr
variable (i.e. target, input, rejected) and were changed from their
default assignments when required. Tables of statistics and histo-
grams were reviewed for interval and class variables.

The second node was the Attribute node, and it marked var:-
ables to be used. Next, this node assigned a role, a type (character
or numerical) and additional attributes for each variable. A vari-
able’s role could be an ID, target, input or rejected label, while the

TABLE 1: Profit matrix.
Predicted Outcome
Actual Outcome 1(Good) 0 (Poor)
1 5,000,000 0
0 0 0
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TABLE 2: Constant cost matrix.

Decision Cost
1 500,000
g 0

FIGURE 2: The Assessment and Scoring nodes.

ariable’s measurement could be assigned to unary, binary, nom-
nal, ordinal and interval.

Furthermore, models in this study were optimized to maximize
-rofit based on a constant cost and expected profits associated with
=ach decision. This required defining a ‘Profit Matrix’ and a ‘Con-
<zant Cost Matrix.” The first was a 2 x 2 matrix that represented the
=xpected profit (see Table 1) based on actual and predicted out-
comes (1 = good well, 0 = poor well). The Constant Cost Matrix
o Table 2 contained two rows with costs based on two decisions

Lor0).

Next, the Partition node performed data sampling into learning,
zlidation and testing sets. These data sets resulted from a com-
~mnation of the user-defined sampling and the random sampling.
Three subsets, Train, Validation and Test, were selected from the
niginal data set of 480 observations.

The Variable Selection node assisted in reducing the number of
aputs by setting a rejected status of all input variables that were
~ot related to the target. In some cases, this automatic selection
vas overridden by assigning the input status to a rejected variable

- the rejected status to an input variable. The subset of the most
mportant inputs was then evaluated in more detail by one of the
modelling nodes.

The next vertical layer of nodes in Figure 1 consisted of the Re-
zression (logistic for the binary target) node, the Tree node and
1e Neural Network node. These modelling nodes performed all of
e steps required to find the most optimal model for the specific
model type.

Finally, the Score node (see Figure 1) was used to generate pre-
Zictions from a trained model and a new input data set. This node
zpplied each model’s formula to the ‘unknown’ data set. The pre-
Jictions were accompanied by assessment statistics. Each of the
modelling nodes in Figure 1 was connected to its own Reporter
node.

The Assessment node (Figure 1 and Figure 2) compared models
and prediction diagnostics for all modelling nodes. A more ad-
-anced comparison could be facilitated with a set of advanced
charts for lift, profit, return on investment (ROI), receiver oper-
zting curve (ROC) and response threshold chart® 519, A direct

nk between a specific modelling node and the Assessment node
was applied to reassure the user’s model selection (Figure 2).

At different steps, two more nodes were applied to review the
Zata and results. First, the Distribution Explorer node enabled vi-
sual exploration of large volumes of data. The node was used pri-
marily in the exploration phase to uncover patterns and trends and
‘o reveal extreme values in the database. Next, the Insight node al-

owed exploring and analyzing the data through graphs and anal-
ses that were linked across multiple windows.
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FIGURE 3: Tree diagram; subdivision levels = 3; max number of
splits = 3.

Decision Tree Modelling

Decision trees are well suited for clustering and classification
tasks. Decision trees classify data by applying a series of simple
rules. Each rule assigns an observation to a class based on one
specific parameter in a recursive fashion. The resulting classes
are individually divided into new classes, based on new splitting
parameters and rules applied to these parameters. All subdivided
and non-subdivided classes are called nodes, and create the hier-
archical structure of the decision tree. This rule-based recursive
splitting process generates branches that can vary in depth. The
depth, in turn, corresponds to the number of subdivision levels.
The original class contains the entire data set and is called the root
node of the tree. The final nodes that are not subdivided are called
the leaves. Such hierarchical structure corresponds to an inverted
tree where the root is on the top and the leaves are at the bottom of
the tree structure.

When being developed with the training set, trees divide a pop-
ulation into segments with similar characteristics. In our case, we
wanted to find out which, of a long list of attributes (geological and
response parameters), were the best predictors of a well’s perfor-
mance, what rules they followed and where in the tree we should
apply them. In general, a decision tree applies the same decision to
each observation that trickles through the set of rules from the tree
root and ends up in the same leaf node. This means the same clas-
sification (good/poor) or the same production value (e.g. 8.31 m?/
day) is associated with all observations in the same leaf node.

Figure 3 presents a tree example with the corresponding values
of parameters that were used to split the nodes at different levels of
the tree subdivision. At first, the algorithm might have determined
that the attribute with the most impact was P_Net_Oil (Producer’s
Pekisko B net oil), and then might have decided to split the popula-
tion into three groups or clusters based on the net pay <8, <16 and
=16. The next most important splits, in order, might have been C_
Oil_0 (zero lag normalized oil response) and P_SUB_Top (Produc-
er’s Pekisko B top subsea). Symbols Y or ‘N’ in Figure 3 identify
good and poor classification clusters. These leaf nodes represented
the nodes that were not subdivided. Numbers in brackets show the
number of observations in each leaf node (non-divided bin). A de-
tailed description of non-lagged and lagged waterflood responses
was presented in earlier papers® 7).,

A final decision tree model (Figure 3) can be used for classi-
fying a new well or newly converted or treated wells from the geo-
logical parameters and the instantaneous oil response (C_Oil 0
— response at time lag = 0). This model assigns wells to two risk
groups of good and poor producers (Y or N). An example of a
pseudo code that corresponds to some portions of this decision tree
is presented below:

IF 16.1 <P NET OIL<17.9

AND  -1250.35 <P_SUB_TOP <-1,244.95
AND  0.26<C_OIL 0
THEN PI1=100.0%
PO = 0.0%
IF P SUB TOP<-1,252.21
AND  —0.045<C_OIL 0<0.26
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AND  16.1 =P NET OIL

THEN Pl =65.2%

PO = 34.8%
IF C_OIL_0<-0.045
AND  16.1 <P_NET OIL
THEN  PI =20.0%

PO =80.0%

where P1 is probability of a good well and PO is probability of a
poor well.

When a decision tree is verified, such code can be easily imple-
mented in any software package that is used in the petroleum in-
dustry. In this specific example, the estimated classification will be
based on the posterior probability of a good well (P1) and a poor
well (P0). With a 50% threshold cutoff value, a user’s decision will
be estimated from a simple formula:

IF (P1 = 50%) THEN Good ELSE Poor.

There are two opposing activities during the tree model develop-
ment. First, an algorithm generates a full-grown tree by a recursive
node splitting, and the second prunes explicit nodes or sub-trees in
order to retain the most optimal tree(!” 1), A recursive splitting of
nodes during a tree construction is based on the strength (statistics)
of the splitting rules:

* If the Chi-square or the F test criterion is selected, then the
computed statistic is the LOGWORTH = -log (p-value from
Chi-square or F test).

* Ifthe Entropy or Gini reduction criterion is selected, then the
computed statistic is the WORTH, which measures the reduc-
tion in variance for the split(®).

Larger values for both LOGWORTH and WORTH are better.
The method is recursive because each set of new nodes results
from the splitting of a previously divided node. After a node is
split, the newly created nodes are considered for splitting. This re-
cursive process ends when no node can be split any further.

Table 3 and Table 4 show two different geological and water-
flood response criteria used to evaluate competing node splits.
Such tables were used during the interactive development of the
decision trees.

TABLE 3: Competing splits for a tree with three
branches. Splitting criterion based on Gini test.

Variable Logworth Groups
GMC_LAG 2.654 2
OMC_LAG 2.474 3
RESPONSE 2.447 2

C_GAS 2.35 2
P_NET_OIL 1.755 3

TABLE 4: Competing splits for a tree with two or three
branches. Spilitting criterion based on Chi-square or F.

Variable Worth Groups
P_NET OIE 0.160 3
OMC_LAG 0.149 3

C_GAS 0.138 3
P_SUB_TOP 0.129 3
GMC_LAG 0.116 3

TABLE 5: Example of a tree node statistics.

Target Values Training Data Validation Data

1 86.7% 80.0% % for each
0 13.3% 20.0% target level
1 13 4 Count for each
0 2 i target level
Total 15 5
Decision 1 5
1 3,833,333 4,000,000
0 0.13333 0.2 Expected profit
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In addition, different sub-tree methods determine which sub--
is selected from the fully-grown tree. This process can be basec =
whether or not the profit/loss matrix is used for a split search. T+
5 shows an example of tree node diagnostics for each target = -
in per cent, the corresponding count, the total count and the oy
decision level associated with a specific node. The last two r
show the expected profit for each level. The statistics are showr -
the training (learning) and validation data sets.

Model Assessment

Early diagnostics based on classification tables (confusion =
bles) indicated that decision tree models performed better
models based on logistic regression and neural networks. This « -
true for both the training (learning) and validation data sets. H
ever, business-driven decisions required more than Jjust two rates
the correct and erroneous classifications. In a non-discriminz: -
drilling or well conversion program, single or multiple criteria -
be used to identify the potential list of wells. However, the progr==
cost can be lowered substantially if we identify a much smz' =
portion of wells that are most likely to respond to the implemers=:
waterflood with the right response type and higher oil rates.

Awell’s classification in this project was based on a pre-seleci=:
cutoff applied to the estimated posterior probability. The follow -
pseudo-code shows this logic:

IF (posterior probability > cutoff)
THEN Good Well
ELSE Poor Well

More advanced analysis and identification of the probab:i -
percentage cutoff was facilitated with lift curves. In a lift cro-
(also known as a gains chart) for a non-binary target, all obs=
vations from the scored data set are sorted from the highest to ==
lowest production probability. For a binary target, the scored c==
set is sorted by the posterior probabilities of the event level (pre-
duction in the highest quartile) in descending order. Then the o~
servations are grouped into deciles.

Figure 4 shows an example of a cumulative percent response
chart for three models. In this chart, the target production index
sorted from left to right, starting with wells that are most likels
produce. This likeliness was estimated based on the posterior proc-
ability of the target event level equal to one (high production =
predicted by each model. The sorted group is lumped into 10 pe
centiles along the X-axis. The lefi-most percentile is the 10% of =

FIGURE 4: Cumulative response curves.
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FIGURE 7: Non-cumulative lift curves.

“1GURE 6: Cumulative lift curves.

« =ls that are the most likely to produce (highest production proba-
= 7v). The vertical axis represents the predicted overall cumulative
wereentile of good producers in the selected deciles along the X-
s Thus, if we drill/convert all wells (100%), the response (per-
~=miage of good wells) will be equal to the success observed in the
«=ole sample (22 — 23%). However, if we go after the best 10%,
"2 or 30% of all wells then the success rate will be around 83%,
~ - and 52%, respectively. Figure 5 presents non-cumulative re-
~wnse curves, which show the percentage of good producers in
20 decile. A baseline in this figure shows an average percentage
- wells with good performance in the original sample.

The next two figures show the lift curves in a relative scale
«were the baseline corresponds to one (historical success rate).
- zure 6 shows the cumulative lift curves, which correspond to
= three models (tree, logistic regression and neural net). A lift
e shows the model’s effectiveness relative to a baseline, which
“ows an overall (average) historical success rate (horizontal line).

=, 2007, Volume 46, No. 5

~ Non-cumulative lift curves (shown in Figure 7) enhance the visual

comparison of the model’s performance in each decile.

The non-cumulative lift curve for the decision tree in Figure 7
shows that beyond the fourth decile, most of the best producers
would be selected and the rest of the wells should perform well
below the overall average. The non-cumulative lift curve for the
tree model in Figure 7 shows nearly a two to four times better
success rate than historically observed in the field. This range of
improvement in the well selection would be achieved if the tree
model was implemented and used to select only 20% and 10% of
the best wells, respectively.

Both sets of lift curves showed that the logistic and neural
models significantly underperformed relative to the decision tree
model. The non-cumulative lift curves in Figure 7 showed that the
best model performance dropped fast from around 4 to 1.8 between
the first and the third best deciles.

Different node splitting criteria can make a difference in most
instances. Figure 8 shows a comparison of lift curves between the
three decision trees with different node splitting criteria. In this
specific case, applying the Chi-square test to evaluate the node
splitting criterion provided the best lift in the first two deciles®.

Many modelling decisions, as well as the model selection, de-
pended on the misclassification rates. Figure 9 shows a confu-
sion (classification) chart with agreements between the actual and
predicted counts for the tree model at the 50% threshold value.
This diagram helped with verifying the agreement between the
actual and the predicted classes at different threshold levels. The
threshold level is the cutoff that was applied in classifying observa-
tions based on the evaluated posterior probabilities. If a predicted
score was below the threshold value, then the predicted production
class was assigned to zero (production below the desired level);
otherwise the class was assigned to one (good production).

Well identification efforts and drilling programs have associated
costs and returns on investment for each case of four outcomes be-
tween the predicted and the actual outcomes. Figure 10 presents
a profit matrix for four hypothetical outcomes. A simple (0/1 or
N/Y) decision schema had two cases of misclassification and two
cases of correct classification. The assigned fix profit was based
on a simple principle that a successful prediction (identified as a
good prospect) would generate 10 units (in millions of $), less 0.0
units of the fixed costs (see 1/1 cell with return = 10). A non-suc-
cessful well pick, which was classified as a good producer, had a
negative return related to the fixed cost (-0.5). The predicted non-
events were classified in a similar way, where 0 was assigned for
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FIGURE 8: Cumulative lift curves for three decision trees with
different node splitting criteria.

FIGURE 9: Threshold chart for a tree model at threshold of 50%.

the 1/0 case (missed revenue), and 0 for the 0/0 case (the correct
prediction of the non-event). This was one of many scenarios that
could be used to test the model performance, stability and sensi-
tivity. The presented values do not reflect actual values in this par-
ticular field.

The corresponding profit (return) chart in Figure 11 shows
the relationship of the estimated return versus the classifica-
tion threshold value (IF posterior probability = threshold, THEN
class = 1). This diagram shows that thresholds in the range of 15
— 50% should generate the highest average return. It shows that
the best average return and the highest total production volumes
could be achieved at the 15% threshold value. This translates to se-
lecting most of the wells (IF posterior probability = 15%, THEN
Good). The above example characterized a relatively successful
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FIGURE 10: Profit matrix.

FIGURE 11: Return (average profit) for decision tres
profit matrix (1/1 = 10M; 1/0 = 0; 0/1 =-0.5; 0/0 = 0%
from Figure 10.

waterflood implementation where a large amoun: =
studies were undertaken before the decisions were muis

Decision Tree Versus Neural Ne

Neural networks have been utilized in a variety =
optimism fueled by the origin of this tool and from =
cessful applications. However, in this study, the new=
were not able to prove their strength(!®-22). In our ===
of the neural network model (Figures 4 to 8), we add=t.
ables, hidden layers and direct links between the =
layer. None of these attempts had any positive effect.
network models produced poorer predictions. Thus. @
utilized a formula that was based on the decision ==

Furthermore, neural network development regus=s: &
statistical analysis in order to understand the datz ==&
flows. Most practitioners apply the stepwise regr
ward regression and the decision tree variable selectin
plying neural network modelling. Finally, neural
cannot be directly applied in business interpretztios
which in some cases can eliminate the neural mods =
eration. Therefore, only significantly better perform
tion rates could justify the neural network model
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sions

Zescribed in this paper is not complete. Specifically,
e waterflood responses with a few geological pa-
onal data sources (e.g. completion, seismic, petro-
i be integrated with the waterflood responses. This
=zt numerical integration of geological and water-
s parameters allow for the prediction of oil produc-
=mmanced recovery processes.
~del types were built, which included decision trees,
mocels and neural networks. These predictive models
womed for a binary target variable that indicated a well’s
vo levels (0/1 or Poor/Good). The indicator vari-
=2 from the normalized oil production and identified
< all wells in the whole field. The normalized oil
w2= characterized by a well’s production relative to the
s sroduction.
ssion, neural network and decision tree models
e and compared. The decision tree model was se-
e best performance. An advantage of the decision
w2 the other types of models was that it could produce
sented interpretable English-rules or logic state-
. “If netpay is greater than 5 m and the lag zero
s zative, then oil production will be in the top 25%
srcuction with a probability of 80%.”
. —=zznostics based on the model verification process
ting wells based on models that use geological
T ication parameters resulted in a success rate of
“mmes better than by traditional methods.
smor=. we showed how a profit matrix might be used to
srediction with the impact (cost) of all classification
. e positive, false positive, true negative and false neg-
oS
weec decision tools require data collection, data
weropriate model selection, model diagnostics and
wsualization. Furthermore, simplicity, interpreta-
) senance requirements and the stability of models
wemce the model development approach.

. w=_ analysis and interpretation in this project were
~'v available data and results already published. The
w=d its scoring logic that are presented in this paper
2= =xamples only and they should not be used in ac-
s without extensive knowledge of data transfor-

“we wsons, exclusions and time period analysis.

ENCLATURE

i = oil response at time lag = 0 (instantaneous
response)

= probability of poor performance (1-P)

= probability of good performance (above a
threshold)

= Pekisko B net oil

= Pekisko B top subsea
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