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Abstract 
This paper presents a novel approach to a time scale discretization when predicting ESP pump failures at 

different scales. This study proves that models can be used to formalize failure predictions, prevention, 

and lead to optimizing the ESP’s replacement and/or maintenance. The target parameters reflected two 

different time scale ranges. In the first approach ‘Time to Failure’ and its corresponding ‘Active Time to 

Failure’ were predicted. The second case excluded time periods when a well was off-line for other 

reasons than failure. These two targets (modeling parameters) represented low frequency events and 

were developed using geological or/and well geometry parameters. The Total Time to Failure model 

(Production Period model) based on a combined trajectory and geology data set showed acceptable and 

stable performance. A corresponding model with wellhead parameters summarized across each 

production period was introduced to complement the large scale analysis. 

A second group of models of higher resolution was designed to detect failures in real time. In these 

cases estimations for the probability of a failure at a specific time using the most recent wellhead data 

while excluding well’s non-active time periods related to workovers and other non-productive time 

periods. 

These models used pre-processed wellhead data from a few selected wells and pads. Well data required 

pooling large amounts of data and developing a parameter summarization in time periods based on 

uninterrupted Motor Current Time Periods. These discrete time periods represented events with or 

without a failure depending on a reason for the current value to be zero. The probability of a pump 

failure was estimated using two approaches. In the first  approach only the last two ‘periods’ that 

corresponded to non-failure and failure periods respectively were used. The second approach involved 

all non-failure periods leading to each corresponding failure period. The first approach overestimated the 

failures while the second approach overestimated the non-failure events. 

 

Initial probability models predicted events with a relatively high success rate. However, more data and 

additional data transformations are required to verify the practicality of our approach. More refined sub-
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period estimates in each Current Time Periods may help in developing improved models. 

 

Introduction 
Pump failures are expensive and predicting these events can reduce lost revenue and help in 

optimization of pump replacement, stopping and/or alerting operations to prevent catastrophic events. 

 

Estimating mean failure rate values and fitting them into known distributions is a common practice in 

process improvements
1
. However, SAGD processes have been evolving very rapidly and it is difficult to 

get a good sample size of the same pump type, size, and working conditions to fit such distributions. 

Furthermore, making decisions to replace a pump when it seems to work well is a difficult decision that 

has to be supported by reliable models. Data driven analytics is emerging for monitoring and preventing 

problems with ESP pumps in the oil industry 
2,3

. What has been missing given the number of SAGD 

operations is analyzing the contribution of other factors to pump failures. The goal of this study was to 

test how geology, well geometry, and well head parameters can help in predicing pump failures. Like 

any analytical project we had to acquire information about pump failures in a specific time period and 

all associated data: well head parameters, well geology description, and well completion information. 

All data sets were tested, cleaned, pre-processed, normalized, and analyzed in a recursive process, which 

is characteristic of data driven projects 
4,5

. Major analytical tasks included: 

 

 Developing metrics associated with ESP pump failures. 

 Identifying TARGET parameters (to be predicted in order to estimate failures and help in 

detection). 

 Identifying the most important geological and well trajectory parameters correlated to pump 

failures. 

 Identifying the combination of wellhead measurements in time supporting predicting/avoidance 

of pump failures and pump replacement planning. 

 

 

Failures by Well – Large Scale Analysis with Geology and Geometry 
Several metrics associated with days between pump failures have been developed and tested. Eight pad 

data from Firebag between 2008 to 2013 was used. Failures for all wells were considered for modeling 

the expected days to failure based on geometry and geology associated with each well. 

We considered several alterative target parameters or variations of the ‘days to failure’. Specifically, we 

estimated a weighted mean or median days and weighted harmonic mean or median days to failure (see 

sample of failure statistics in shown in Table 1 APPENIDX 2). The weighting was done by an 

associated pump size (Median catalog derived pump rate). The failure definition/flag was based on 

DIFA reports. 

 

We built multivariate regression models that predicted the median number of days to pump failure using 

geology and/or trajectory based metrics. Multi-step model development analyzed the contributions and 

significance of variables and model strength for each set of final variables. This led to robust models 

with only the most significant parameters being utilized. A trajectory based model was stronger than 

geology based model. These models were significant but weak and characterized by R-square = 0.36 and 

0.25 respectively. 

A final model based on selected variables from both sets of parameters (geometry and geology) showed 

improved performance with R-square = 0.41 as shown in Table 2. This number was strong enough to 
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show that there were significant parameters associated with higher frequency of failures. The model 

presented here was based on one geometry variable and three geological parameters. All the explanatory 

estimates were significant and stable. A higher number of days to failure can be expected for: 

 An injector with higher  TVDSS variation 

 A higher % of F2 channel 

 A higher Continuous Gross Pore Volume (m3) 

 A lower Continuous Gross Porosity (%) 

The last two explanatory variables represent a combination of two measurements representing the same 

factor. This indicates that different formulas and combinations/ratios of explanatory parameters could 

improve future model performances. This and the following parts of the paper show the importance of 

the data processing steps.   

 

 

Failures – Large Scale Analysis with Wellhead Data 
Next a set of regression models for Total Time to Failure and Hours-On to Failure using only well-

head parameters were built. The second target (hours-on) parameter excluded time periods from the well 

history when the pump was not operational for any reason. These models used heavily pre-processed 

wellhead (TAG) data. At this stage data was pooled for selected wells due to the large amount of 

wellhead data that had to be processed.  

 

Specifically, time interval discretization and parameter integration in these time intervals was 

introduced. Thus, we compressed each time period during which a pump worked continuously into a set 

of estimates. The new data contained a sequential period number and summarized estimates of all 

parameters during each time period. We utilized two definitions. The first is a standard definition during 

SAGD operation and the second is our definition of the discretized time period. 

 

 Production Period is a continuous time period between the pump installation date/time and its 

failure date/time.  

 Motor Current Period is a continuous time period with all values of the motor current greater 

than zero. A new Motor Current Period starts after each pump motor restart. 

 

Several new parameters were defined for wellhead measurements that described count, max, min, mean, 

median, and variation statistics during each discrete Motor Current Period. A sample of these parameters 

is presented in Table 3. 

 

The first Time to Failure model used only three metrics: maximum value of Injector Casing Percent 

Open, maximum of Producer Pressure Casing at wellhead, and minimum of Producer Temperature 

Casing at wellhead.  

 

A second version of the Hours-On to Failure regression model included more exotic metrics based on 

hours-on during motor current periods. Two metrics INJ_TBG_PCT_MAX (max of INJ_TBG_PCT 

during the whole Production Period) and PROD_T_TBG_MEAN_MAX (max value of the mean values 

of PROD_T_TBG that was estimated during each Motor Current Period) were used to build a final 

regression model.  It had an R-Square = 0.75 and parameter estimates are presented in Table 4. 

 

A corresponding decision tree model was characterized by R-Square = 0.82 and shown in Figure 1. The 

root split (top) was based on Inj_Tbg_Pct_Max, which was present in two-variable regression Hours-On 
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model. The second level splits (in branches below) were based on Prod_Csg_Pct_Mean_Median and 

Stm_Tbg_StdDev_Mean. This model indicates that Prod_Csg_Pct_Min_Median results in higher Hours-

On to failure. In the second branch with a three node split low and high variability in Stm_TBG result in 

lower Hours-On to Failure. Mid range variability may indicate a situation when the steam chamber is 

being better controlled, which would result in better pump life. The model diagnostics confirm that 

building predictive models for the pumps expected life is possible. However, we did not have enough 

data to perform enough model ‘stress testing’. For example we did not find any difference based on a 

pump size.  

 

Probability of Failures – Detailed Scale Analysis with Wellhead Data in the 
Last Two Current Periods 
Two models were developed that predicted the actual probability of failure in the last motor current 

period when the actual event took place. As it was described before each production period (time from 

the pump installation to the corresponding failure) was divided into the motor current periods of 

continuous electric motor readings (Period of Motor Current >0). That represented predicting failures as 

they were happening. 

 

Our initial model predicted a failure in the last motor current period and it used average well head 

parameters in the last two motor current periods. Thus, we looked at the wellhead parameter summarizes 

in the period when the failure happened to get the failure metrics. The non-failure metrics were obtained 

from the previous period when pump did not fail. The logistic model was developed to detect the 

impeding failure based on differences of these parameters during these two time periods. 

 

Due to limited data pool the above target definition of the failure and the non-failure event had 42 

motor-current period pairs with the failure and the non-failure events (Y/N). The corresponding logistic 

regression model was characterized by a low R-Square = 0.21 and Max-Rescaled R-Square = 0.28. At 

the same time nearly 10-12 parameters competed for the final model but none of the most important 

variable sets could support good models. 

 

Table 5 presents a corresponding frequency statistics with the correct and incorrect model classification. 

Specifically, it shows a frequency table that shows observed levels (_FROM_) of the target parameter 

(Failed=N/Y) versus the predicted levels (Into_P) and corresponding metrics (Frequency, Percent, Row 

Pct, and Column Pct). 

 

Only 24 cases of NO Failure were properly classified, which is 57.14% of all cases without failure. The 

other 18 cases were classified as failures. We had more luck with the failure rate (2
nd

 row of the table). 

30 cases of failure were properly classified with 71.43% success rate.  

A high number of misclassifications and especially false positive outcomes (non-failure misclassified as 

failure) show that the model was too sensitive. This was due to unknown pump age and equal number of 

No-Fault (N) and Fault (Y) events (heavily weighting Y events). 

 

  



SPE-189747-MS  5 

Probability of Failures – Detailed Scale Analysis with Wellhead Data and All 
Current Periods 
Our final model used estimated well-head parameters in all current periods during the production period 

leading to failure. It was built with all Non-Failure events in a series of the current periods leading to a 

specific failure. Thus,  a ‘failed’ parameter/indicator was created and it was set to ‘Y’ only during the 

last period (29 cases) and ‘N’ in all previous motor current periods without failures (891 cases). These 

two counts changed with iterations and depended on specific data pre-processing and number of 

variables in the logistic regression model. During this modeling stage we included the motor age at the 

beginning of each motor current period. 

 

A preliminary logistic model had good R-Square = 0.74. Some of the most important parameters 

included: Age, Annular Gas Flow, Frequency, Motor Current, casing and tubing parameters. In the 

modeling process we discovered that too many parameters with significant statistics (Pr > ChiSq <0.05) 

showed up on the most important list of parameters. The same phenomenon characterized the previously 

presented model based only on the last two current periods. Too many variables typically result in model 

instabilities due to multivariate correlations. Furthermore, in this case we are modeling a rare case 

scenario because the modeled target level occurs approximately 3% of time.   

 

Thus, the model performance (in Table 6) was probably too optimistic and biased because the data used 

to fit the model was also used in the assessment of the model.  We tried two ways of dealing with this 

problem. In the first we split the available data into training and validation data sets. We trained the 

model using the training data set and then assessed by applying the model to the validation data set.  

However, our available data set had very few ‘Failed’ cases (29 out of 920) and splitting data into two 

sets resulted in an unacceptably small failure count in both sets. In the second approach we applied 

cross-validation process, which could provide an unbiased assessment of the model without reducing the 

training data set. In both cases we did not get much better results.  

 

Both modeling cases showed that well-head parameters in time periods leading to failures support early 

failure detection. More data should help in developing more robust models and more work had to be 

done with the data transformation/normalization, and variables elimination. In data driven modeling it is 

essential to create as many physics based parameters in the initial stages of the project. Some of these 

variables could be based on combinations of monitored variables as it was shown when modeling the 

intake temperature during SAGD 
6
. Advanced metrics could be based on a combination of motor current 

periods and fitting ‘known’ shapes (shapelets) into these series 
7
. In the next iteration we are planning to 

include parameters associated with quality of power being supplied to a pump. 

 

Potential Implementation 
The above study indicates that one model could not satisfy our needs. Different target parameter 

definitions resulted in developing models with different detection sensitivity and at different time 

resolution scale. 

Thus, the most likely solution should be based on a model predicting: 

 Expected Hours to Failure 

 Oversensitive model for Probability of Failure based on the last few time periods associated with 

the motor current 

 Probability of Failure based on all motor current periods from the past history (less sensitive 

model). 

 

Their weighted contributions could be used to estimate a final pump wellness indicator. The first 

oversensitive model prone to the false positive detection would be used for flagging potential problems, 
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while the second model would identify the most likely failure candidates. The above models can be 

implemented as pop-up solution in the currently available field applications to display expected ‘Time to 

Failure’ and a status for the Failure Probability. 

 

 

Summary 
This study was intended as a proof of concept for linking the ESP pump failure to geology and well 

geometry. Furthermore, we proved that wellhead parameters could be used to predict pump failures with 

enough time to set a warning or stopping the pump prior to the event. 

In order to identify parameters that could help in pump failure detection we introduced parameter 

discretization based on the motor current. 

 

Implemented data pre-processing and definitions proved that more than one model type was needed to 

address all aspects of predicting pump failures. 

 

A large scale model could be build for predicting Time to Failure. A more detailed scale could be 

represented by Probability of Failure models. Different target definitions and advanced data pre-

processing lead to models of variable sensitivity resulting in too many false detections or too few true 

detections. In our opinion, we would have to implement these different model types and use their 

predictions in a combined fashion. 
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Appendix 1 – Figures 
 

 
Figure 1: Decision Tree for Hours-On Time to Failure (R-Square = 0.82) 
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Appendix 2 – Tables 
 

 
 

Table 1: Example of failure statistics for two pads associated with Y/N true ESP failure flag. 

 

 

Parameter Estimates 

Variable 
Parameter Standard 

t Value Pr > |t| Tolerance 
Variance 

Estimate Error Inflation 

Intercept 902.6043 374.429 2.41 0.019 0 0 

Std_TVDSS_I 152.0854 59.1681 2.57 0.0127 0.2892 1.2973 

Channel_F2_P 1611.452 633.094 2.55 0.0135 0.2550 1.0287 

Cont_Gross2 0.000152 4.8E-05 3.18 0.0023 0.3660 1.353 

Cont_Gross_P -2952.15 1248.17 -2.37 0.0213 -0.269 1.330 

 

Table 2: Model statistics for Days to Failure derived from well’s geometry and geology (R-Square = 

0.41, Adjusted R-Square = 0.38) 
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Inj_Csg_Pct_Max 
Maximum value of Injector Casing 

Percent Open Choke (Inj_Csg_Pct) 

Prod_P_csg_Max 
Maximum of Producer Pressure Casing 

at wellhead (Prod_P_csg) 

Prod_T_Csg_Min 
Minimum of Producer Temperature 

casing at wellhead (Prod_T_Csg)  

    

Inj_Tbg_Pct_Max 
Maximum value of Injector Tubing 

Percent Open Choke (Inj_Tbg_Pct) 

Prod_P_Tbg_Max 
Maximum of Producer Pressure Tubing 

at wellhead (Prod_P_Tbg) 

Prod_T_Tbg_Min 
Minimum of Producer Temperature 

tubing at wellhead (Prod_T_Tbg)  

    

Prod_T_Tbg_Mean_Max  
Max of Mean T_Tbg by Current Periods 

during the specific Production Period 

Prod_Csg_Pct_Mean_Median 

Median of Mean Producer Casing 

Percent Open Choke by Motor Current 

Period 

Stm_Tbg_StdDev_Mean 
Mean of Standard Deviation for Tubing 

Steam by Motor Current Period 

 

Table 3: Important derived metrics (statistics) used in the modeling process included. 

 

 

 

 

 

Parameter Estimates 

Variable DF 
Parameter Standard 

t Value Pr > |t| Tolerance 
Variance 

Estimate Error Inflation 

Intercept 1 -66553 9568.43 -6.96 <.0001 . 0 

Inj_Tbg_Pct_Max 1 130.46 23.9061 5.46 <.0001 0.8273 1.2087 

Prod_T_tbg_Mean_Max 1 336.94 55.34 6.09 <.0001 0.8273 1.2087 

 

Table 4: Model parameters for Hours-On to Failure derived from wellhead data (R-Square = 0.75, 

Adjusted R-Square = 0.73) 
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Frequency Table of _FROM_ by Into_P 

Percent _From_ 
Into_P 

Row Pct Observed 

Col Pct Response) N Y Total 

  

N 

24 18 42 

  28.57 21.43 50 

  57.14 42.86   

  66.67 37.5   

  

Y 

12 30 42 

  14.29 35.71 50 

  28.57 71.43   

  33.33 62.5   

  
Total 

36 48 84 

  42.86 57.14 100 

 

Table 5: Classification table for Failure weighted model. 

 

 

 

 

Frequency Table of _FROM_ by Into_P 

Percent _From_ 
Into_P 

Row Pct Observed 

Col Pct Response) N Y Total 

  

N 

890 1 891 

  96.74 0.11 96.85 

  99.89 0.11   

  99.55 3.85   

  

Y 

4 25 29 

  0.43 2.72 3.15 

  13.79 86.21   

  0.45 96.15   

  
Total 

894 26 920 

  97.17 2.83 100 

 

Table 6: Classification table for Non-Failure weighted model. 


